• Title/Summary/Keyword: Inverse square potential

Search Result 16, Processing Time 0.019 seconds

Estimating Neuro-Pathway from Visual and Somatosensory Evoked Potential (유발전위를 이용한 뇌의 시감각 및 체성감각 인지영역 추정기술)

  • 배병훈;김동우
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.481-488
    • /
    • 1994
  • In this paper a study of neuro-pathway estimation based on visual and somatosensory evoked potential is given. The evoked potentials which are caused by visual and somatosensory stimulation are detected by an average method. The forward problem that is estimating a scalp potential from a given electrical source in the brain is solved by using a triple concentric spherical shell model of the head and a single current dipole model of the neuron activity. The inverse problem which calculates a source position is solved by a least square fit between the model predicted potential and a given evoked potential measurement. The similarities between estimated sensory neuro-pathways and physiological brain function regions are verified.

  • PDF

ON THE GENERALIZED ORNSTEIN-UHLENBECK OPERATORS WITH REGULAR AND SINGULAR POTENTIALS IN WEIGHTED Lp-SPACES

  • Imen Metoui
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • In this paper, we give sufficient conditions for the generalized Ornstein-Uhlenbeck operators perturbed by regular potentials and inverse square potentials AΦ,G,V,c=∆-∇Φ·∇+G·∇-V+c|x|-2 with a suitable domain generates a quasi-contractive, positive and analytic C0-semigroup in Lp(ℝN , e-Φ(x)dx), 1 < p < ∞. The proofs are based on an Lp-weighted Hardy inequality and perturbation techniques. The results extend and improve the generation theorems established by Metoui [7] and Metoui-Mourou [8].

Vehicle-induced aerodynamic loads on highway sound barriers part 2: numerical and theoretical investigation

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.479-494
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. As references to the previous field experiment, the vehicle-induced aerodynamic loads is investigated by numerical and theoretical methodologies. The numerical results are compared to the experimental one and proved to be available. By analyzing the flow field achieved in the numerical simulation, the potential flow is proved to be the main source of both head and wake impact, so the theoretical model is also validated. The results from the two methodologies show that the shorter vehicle length would produce larger negative pressure peak as the head impact and wake impact overlapping with each other, and together with the fast speed, it would lead to a wake without vortex shedding, which makes the potential hypothesis more accurate. It also proves the expectation in vehicle-induced aerodynamic loads on Highway Sound Barriers Part1: Field Experiment, that max/min pressure is proportional to the square of vehicle speed and inverse square of separation distance.

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P.;Thakur, Ajaykumar G.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.409-426
    • /
    • 2019
  • The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

Applicability Analysis of FAO56 Penman-Monteith Methodology for Estimating Potential Evapotranspiration in Andong Dam Watershed Using Limited Meteorological Data (제한적인 기상자료 조건에서의 잠재증발산량 추정을 위한 FAO56 Penman-Monteith 방법의 적용성 분석 - 안동댐 유역을 사례로 -)

  • Kim, Sea Jin;Kim, Moon-il;Lim, Chul-Hee;Lee, Woo-Kyun;Kim, Baek-Jo
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.125-143
    • /
    • 2017
  • This study is conducted to estimate potential evapotranspiration of 10 weather observing systems in Andong Dam watershed with FAO56 Penman-Monteith (FAO56 PM) methodology using the meteorological data from 2013 to 2014. Also, assuming that there is no solar radiation data, humidity data or wind speed data, the potential evapotranspiration was estimated by FAO56 PM and the results were evaluated to discuss whether the methodology is applicable when meteorological dataset is not available. Then, the potential evapotranspiration was estimated with Hargreaves method and compared with the potential evapotranspiration estimated by FAO56 PM only with the temperature dataset. As to compare the potential evapotranspiration estimated from the complete meteorological dataset and that estimated from limited dataset, statistical analysis was performed using the Root Mean Square Error (RMSE), the Mean Bias Error (MBE), the Mean Absolute Error (MAE) and the coefficient of determination ($R^2$). Also the Inverse Distance Weighted (IDW) method was performed to conduct spatial analysis. From the result, even when the meteorological data is limited, FAO56 PM showed relatively high accuracy in calculating potential evapotranspiration by estimating the meteorological data.

Estimation of the Visual Neuro-Pathway by the Source Tracing Method (신경전류추적법을 이용한 뇌의 시각신경로 추정)

  • Bae, B.H.;Kim, D.W.;Choi, J.M.;Kim, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.65-68
    • /
    • 1994
  • 시각자극에 의해 머리표면에서 발생하는 Transient Evoked Potential을 검출하여 Source Tracing Method를 이용하여 뇌의 시각인지영역을 추정하였다. 본 과정에서 TEP검출방식은 average method를 이용하였고, 신경흥분에 대한 물리적 모델로 Single Current Dipole Model을 이용하고, 머리기하에 대한 3중구각모델을 이용하여 Forward Problem을 풀었다. Inverse Problem은 current dipole의 6개의 parameter에 대한 Least Square Error Method를 이용하여 신경흥분의 위치를 추정하였다. 이러한 결과와 생리학적으로 밝혀진 시각경로와의 비교결과 유사성이 확인되었다.

  • PDF

Comparison between Spatial Interpolation Methods of Temperature Data for Garlic Cultivation (마늘 재배적지분석을 위한 기온자료 공간보간기법 비교)

  • Kim, Yong-Wan;Hong, Suk-Young;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.1-7
    • /
    • 2011
  • The objective of this study is to decide a spatial interpolation method on temperature data for the suitability analysis of garlic cultivation. In Korea, garlic is the second most cultivated condiment vegetable after red pepper. Nowadays warm-temperate garlic faces potential shift of its arable area according to warmer temperature in the Korean Peninsula, and the change can be drawn with the precise temperature map derived from interpolation on point-measured data. To find the preferable interpolation method in cases of germination and vegetative period of the garlic, different approaches were tested as follows: Inverse Distance Weighted (IDW), Spline, Ordinary Kriging (OK), and Universal Kriging (UK). As a result, IDW and UK show the lowest root mean square errors as for the germination and vegetative seasons, respectively. However, statistically significant difference was not revealed among the applied methods regarding the germinating period. Eventually this will contribute to mapping the suitable lands for the cultivation of warm-temperate garlic reasonably.

Application of Genetic Algorithm for Large-Scale Multiuser MIMO Detection with Non-Gaussian Noise

  • Ran, Rong
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.73-78
    • /
    • 2022
  • Based on experimental measurements conducted on many different practical wireless communication systems, ambient noise has been shown to be decidedly non-Gaussian owing to impulsive phenomena. However, most multiuser detection techniques proposed thus far have considered Gaussian noise only. They may therefore suffer from a considerable performance loss in the presence of impulsive ambient noise. In this paper, we consider a large-scale multiuser multiple-input multiple-output system in the presence of non-Gaussian noise and propose a genetic algorithm (GA) based detector for large-dimensional multiuser signal detection. The proposed algorithm is more robust than linear multi-user detectors for non-Gaussian noise because it uses a multi-directional search to manipulate and maintain a population of potential solutions. Meanwhile, the proposed GA-based algorithm has a comparable complexity because it does not require any complicated computations (e.g., a matrix inverse or derivation). The simulation results show that the GA offers a performance gain over the linear minimum mean square error algorithm for both non-Gaussian and Gaussian noise.

Delamination evaluation on basalt FRP composite pipe by electrical potential change

  • Altabey, Wael A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.515-528
    • /
    • 2017
  • Since composite structures are widely used in structural engineering, delamination in such structures is an important issue of research. Delamination is one of a principal cause of failure in composites. In This study the electrical potential (EP) technique is applied to detect and locate delamination in basalt fiber reinforced polymer (FRP) laminate composite pipe by using electrical capacitance sensor (ECS). The proposed EP method is able to identify and localize hidden delamination inside composite layers without overlapping with other method data accumulated to achieve an overall identification of the delamination location/size in a composite, with high accuracy, easy and low-cost. Twelve electrodes are mounted on the outer surface of the pipe. Afterwards, the delamination is introduced into between the three layers (0º/90º/0º)s laminates pipe, split into twelve scenarios. The dielectric properties change in basalt FRP pipe is measured before and after delamination occurred using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to delamination, a finite element simulation model for delamination location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Response surfaces method (RSM) are adopted as a tool for solving inverse problems to estimate delamination location/size from the measured electrical potential changes of all segments between electrodes. The results show good convergence between the finite element model (FEM) and estimated results. Also the results indicate that the proposed method successfully assesses the delamination location/size for basalt FRP laminate composite pipes. The illustrated results are in excellent agreement with the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.

Added Mass of Regular Polygonal Cylinders with Fluid Gap (유체 의 틈 이 있는 정다각형 실린더 의 부가질량)

  • 김만회;김문언;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.56-63
    • /
    • 1985
  • Methods for evaluating the added masses of square and hexagonal structures with fluid gap are presented. For a sufficiently small fluid gap, an analytical expression for the added mass is found using the method of matched asymptotic expansion. Experimental data and numerical results using finite element method are also obtained for various sizes of fluid gap. It is shown that added masses increase in inverse proportion to the fluid gap as it becomes smaller. Experimental data, theoretical and numerical results are in good agreement.