• Title/Summary/Keyword: Inverse dynamics model

Search Result 116, Processing Time 0.024 seconds

An Efficient Dynamic Modeling Method for Hybrid Robotic Systems

  • Chung, Goo-Bong;Yi, Byung-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2719-2724
    • /
    • 2003
  • In this paper, we deal with the kinematic and dynamic modeling of hybrid robotic systems that are constructed by combination of parallel and serial modules or series of parallel modules. Previously, open-tree structure has been employed for dynamic modeling of hybrid robotic systems. Though this method is generally used, however, it requires expensive computation as the size of the system increases. Therefore, we propose an efficient dynamic modeling methodology for hybrid robotic systems. Initially, the dynamic model for the proximal module is obtained with respect to the independent joint coordinates. Then, in order to represent the operational dynamics of the proximal module, we model virtual joints attached at the top platform of the proximal module. The dynamic motion of the next module exerts dynamic forces to the virtual joints, which in fact is equivalent to the reaction forces exerted on the platform of the lower module by the dynamics of the upper module. Then, the dynamic forces at the virtual joints are distributed to the independent joints of the proximal module. For multiple modules, this scheme can be constructed as a recursive dynamic formulation, which results in reduction of the complexness of the open-tree structure method for modeling of hybrid robotic systems. Simulation for inverse dynamics is performed to validate the proposed modeling algorithm.

  • PDF

Robust nonlinear control of robotic manipulators (로보트 매니플레이터의 비선형 강건 제어)

  • 박현우;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.32-36
    • /
    • 1988
  • Generally, for nonlinear control of robotic system, the method of computed torque or inverse dynamics is frequently used. In this case, exact knowledge of the system parameters is required, however. This paper addresses the problem of nonlinear control when the parameter of system is varied. The approach is based upon decoupled model following. As an example, control of a three degree of freedom manipulator arm under mass variation is simulated.

  • PDF

분포매개정수를 갖는 원자로의 최적제어 2

  • 지창열
    • 전기의세계
    • /
    • v.29 no.4
    • /
    • pp.256-259
    • /
    • 1980
  • A singular pertubation theory is applied to obtain an approximate solution for suboptimal control of nuclear reactors with spatially distributed parameters. The inverse of the neutron velocity is regarded as a small perturbing parameter, and the model, adopted for simplicity, is a cylindrically symmetrical reactor whose dynamics are described by the one group diffusion equation with one delayed neutron group. The Helmholtz mode expansion is used for the application of the optimal theory for lumped parameter systems to the spatially distributed parameter systems. An asymptotic expansion of the feedback gain matrix is obtained with construction of the boundary layer correction up to the first order.

  • PDF

Walk Simulations of a Biped Robot

  • Lim, S.;Kim, K.I.;Son, Y.I.;Kang, H.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2132-2137
    • /
    • 2005
  • This paper is concerned with computer simulations of a biped robot walking in dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a kinematically ingenious design. Specific walking patterns are off-line generated meeting stability based on the ZMP condition. Subsequently, to verify whether the robot can walk as planned, a multi-body dynamics CAE code has been applied to the corresponding joint motions determined by inverse kinematics. In this manner, complex mass effects could be accurately evaluated for the robot model. As a result, key parameters to successful gaits are identified including inherent characteristics as well. Also, joint actuator capacities are found required to carry out those gaits.

  • PDF

Motion Analysis of Omni-directional Self-propulsive Polishing Robot (전방향 자기추진 바닥닦기 로봇의 운동해석)

  • Shin, Dong-Hun;Kim, Ho-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.151-159
    • /
    • 1999
  • A self-propulsive polishing robot is proposed as a method which automates a floor polisher. The proposed robot with two rotary brushes does not require any mechanism such as wheels to obtain driving forces. When the robot polishes a floor with its two brushes rotating, friction forces occur between the two brushes and the floor. These friction forces are used to move the robot. Thus, the robot can move in any direction by controlling the two rotary brushes properly. In this paper, firstly a dynamics model of a brush is presented. It computes the friction force between the brush and the floor. Secondly, the dynamics of the proposed robot is presented by using the bush dynamics. Finally, the inverse dynamics is solved for the basic motions, such as the forward, backward, leftward, rightward motions and the pure rotaion. This paper will contribute to realize a self-propulsive polishing robot as proposed above, In addition, this paper will give basic ideas to automate the concrete floor finishing trowel, because its basic idea for motion is similar to that of the proposed robot.

  • PDF

Disturbance Observer-Based Control for 6-DOF Remotely Operated Underwater Vehicle with Model Uncertainties (모델 불확실성을 갖는 6자유도 원격조종 수중로봇의 외란 관측기 기반 제어)

  • Junsik Kim;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.82-87
    • /
    • 2023
  • This paper proposes a disturbance observer-based control for 6-DOF remotely operated underwater vehicles with model uncertainties. The sum of external disturbance and the forces generated from model parameters except for the inertial matrix of the hydrodynamic model is defined as a lumped disturbance in this paper. Then, the lumped disturbance caused by model uncertainties and the external forces is estimated using the disturbance observer. Fortunately, the disturbance observer is constructed as a linear form because all the elements of the inertial matrix of the hydrodynamic model are constants. To verify the proposed control scheme, we show that the actual lumped disturbance is similar to the estimated lumped disturbance obtained by the disturbance observer. Finally, the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Estimation of the Properties for a Charring Material Using the RPSO Algorithm (RPSO 알고리즘을 이용한 탄화 재료의 열분해 물성치 추정)

  • Chang, Hee-Chul;Park, Won-Hee;Yoon, Kyung-Beom;Kim, Tae-Kuk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • Fire characteristics can be analyzed more realistically by using more accurate properties related to the fire dynamics and one way to acquire these fire properties is to use one of the inverse property estimation techniques. In this study two optimization algorithms which are frequently applied for the inverse heat transfer problems are selected to demonstrate the procedure of obtaining pyrolysis properties of charring material with relatively simple thermal decomposition. Thermal decomposition is occurred at the surface of the charring material heated by receiving the radiative energy from external heat sources and in this process the heat transfer through the charring material is simplified by an unsteady 1-dimensional problem. The basic genetic algorithm(GA) and repulsive particle swarm optimization(RPSO) algorithm are used to find the eight properties of a charring material; thermal conductivity(virgin, char), specific heat(virgin, char), char density, heat of pyrolysis, pre-exponential factor and activation energy by using the surface temperature and mass loss rate history data which are obtained from the calculated experiments. Results show that the RPSO algorithm has better performance in estimating the eight pyrolysis properties than the basic GA for problems considered in this study.

Analysis on the Running Stability of Rolling-stock according to Wheel Profile Wear (차륜답면형상 마모에 따른 차량 주행안정성 영향 분석)

  • Hur, Hyun-Moo;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.551-558
    • /
    • 2011
  • To analyze the effect of wear of wheel profile on the running stability of rolling-stock, theoretical and experimental studies were conducted on the profiles used in conventional lines. In experiment using 1/5 scale model to verify the results of the theoretical analysis, the test results of the critical speed for worn wheel profile samples show similar trend. In case of the conical type wheel profile(Profile 40), the equivalent conicity is increased with flange wear. But in case of the arc type wheel profile(Profile 20h), the equivalent conicity is decreased with flange wear. And the critical speed of the bogie was inverse proportion to the equivalent conicity. It is shown that the variation of the critical speed with the wheel wear could be changed according to the design concept and wear pattern of wheel profile. Results of the theoretical and experimental studies are discussed here.

Trajectory Tracking Control of a Real Redundant Manipulator of the SCARA Type

  • Urrea, Claudio;Kern, John
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.215-226
    • /
    • 2016
  • Modeling, control and implementation of a real redundant robot with five Degrees Freedom (DOF) of the SCARA (Selective Compliant Assembly Robot Arm) manipulator type is presented. Through geometric methods and structural and functional considerations, the inverse kinematics for redundant robot can be obtained. By means of a modification of the classical sliding mode control law through a hyperbolic function, we get a new algorithm which enables reducing the chattering effect of the real actuators, which together with the learning and adaptive controllers, is applied to the model and to the real robot. A simulation environment including the actuator dynamics is elaborated. A 5 DOF robot, a communication interface and a signal conditioning circuit are designed and implemented for feedback. Three control laws are executed in: a simulation structure (together with the dynamic model of the SCARA type redundant manipulator and the actuator dynamics) and a real redundant manipulator of the SCARA type carried out using MatLab/Simulink programming tools. The results, obtained through simulation and implementation, were represented by comparative curves and RMS indices of the joint errors, and they showed that the redundant manipulator, both in the simulation and the implementation, followed the test trajectory with less pronounced maximum errors using the adaptive controller than the other controllers, with more homogeneous motions of the manipulator.

Helicopter FBW Flight Control Law Design for the Handling Quality Performance (비행조종성능을 위한 헬리콥터 FBW 비행제어법칙 설계)

  • Choi, In-Ho;Kim, Eung-Tai;Hyun, Jung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1561-1567
    • /
    • 2013
  • This paper is regarding the helicopter flight control law design for the handling quality performance. MIL-F-83300 and ADS-33E specification is used of the helicopter flight handling quality and to meet these requirements, ACAH type controller is required. This paper described the ACAH type controller design and performance evaluations. Helicopter dynamics first developed as nonlinear dynamics including rotor dynamics and then linear model was extracted from hovering to forward flight mode using trim condition. Control law used the model following to meet the handling qualities, the simple inverse model as feed forward gain, decoupling logic and phase model to decouple the axes, and linear model to calculate the coefficients. Handling quality evaluation used the matlab based Conduit tool and verified that Level 1 requirement is satisfied.