• Title/Summary/Keyword: Inverse analysis program

Search Result 112, Processing Time 0.025 seconds

An Effective Fault Analysis Method in Large Scale Power System (대전력계통의 고장해석에 관한 효추적인 계산방법에 관한 연구)

  • Jai-Kil Chung;Gi-Sig Byun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.12
    • /
    • pp.435-440
    • /
    • 1983
  • The methods of forming the bus impedance matrix, which is mainly employed in fault analysis of power system, can be generally classified in catagories, (1) the one being the inverse matrix of bus admittance matrix, and (2) the other the bus impedance matrix succesive formation method by particular algorithms. The former method is theouetically elegant, but the formation and inverse of complex bus admittance matrix for large power system requires too much amounts of computer memory space and computing time. The latter method also requires too much memory space. Therefore, in this paper, an algorithm and computer program is introduced for the formation of a sparse bus impedance matrix which generates only the matching terms of the admittance matrix. So, this method can reduce the computer memory and computing time, and can be applied to fault analysis of large power system by small digital computer.

Kinematics Analysis of the Milti-joint Robot Manipulator for an Automatic Milking System (자동 착유시스템을 위한 다관절 로봇 머니퓰레이터의 기구학적 분석)

  • Kim, W.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.179-186
    • /
    • 2007
  • The purpose of this study was kinematics analysis of the multi-joint robot manipulator for an automatic milking system. The multi-joint robot manipulator was consisted of one perpendicular link and four revolution links to attach simultaneously four teat cups to four teats of a milking cow. The local coordinates of each joints on the robot manipulator was given for kinematics analysis. The transformation of manipulator was able to be given by kinematics using Denavit-Hatenberg parameters. The value of inverse kinematics which was solved by two geometric solution methods. The kinematics solutions was verified by AutoCAD, MATLAB, simulation program was developed using Visual C++.

  • PDF

Estimation of Joint Moment and Muscle Force in Lower Extremity During Sit-to-Stand Movement by Inverse Dynamics Analysis and by Electromyography (역동역학해석 및 근전도 신호를 이용한 앉기-서기 동작에서의 하지 관절 모멘트 및 근력 예측)

  • Kim, Yoon-Hyuk;Phuong, Bui Thi Thanh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1345-1350
    • /
    • 2010
  • Sit-to-stand movement is a basic movement in daily activities. On the basis of this movement, the biomechanical functions of a person can be evaluated. The study of the joint kinematics, moment, and muscle coordination is necessary to understand the characteristics of the sit-to-stand movement. We have developed a motion-based program for inverse dynamics analysis and the electromyogram-based program for muscle force prediction. The joint kinematics and the kinetic results estimated on the basis of obtained motion data, ground reaction force, and electromyogram signals were compared with those reported in previous studies, and the muscle forces determined by the two methods were compared with each other. The methods and programs developed in this study can be used to understand biomechanics and muscle coordination involved in basic movements in daily activities.

A Study on a Geometrical Analysis for the Manual Mode of an Advanced Teleoperator System (지적 원격조작시스템의 수동모드 개선을 위한 기하학적 해석에 관한 연구)

  • Lee, Sun-Yo;Kim, Chang-Dae;Park, Se-Gwon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.31-44
    • /
    • 1988
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment then the automatic mode changes into the manual mode. The operation by the control program and the operation by a human recover the error in the manual mode. The system resumes the automatic mode and continues the given task. It is necessary to improve the manual mode in order to make the best use of a man-robot system, as a part of the human interface technique. Therefore, the error recovery task is performed by combining the operation by the control program representing autonomy of a robot and the operation by a human representing versatility of a human operator effectively in the view point of human factors engineering. The geometric inverse kinematics is used for the calculation of the robot joint values in the operation by the control program. The singularity operation error and the parameter operation error often occur in this procedure. These two operation errors increase the movement time of the robot and the coordinate reading time, during the error recovery task. A singularity algorithm, parameter algorithm and fuzzy control are studied so as to remove the disadvantages of geometric inverse kinematics. And the geometric straight line motion is studied so as to improve the disadvantages of the operation by a human.

  • PDF

A Study on the method for finding the degree of proficiency of technicians by the use of VTR and Machine of working character tests by a pattern of YK (VTR 및 YK식(式) 작업성격검사기(作業性格檢査器)를 이용(利用)한 기능공(技能工)의 숙련도측정(熟練度測定)에 관(關)한 연구(硏究))

  • Lee, Sun-Yo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.2 no.1
    • /
    • pp.45-60
    • /
    • 1976
  • In this study, Multiple Factor Analysis was undertaken for the purpose of substituting General Vocational Aptitude tester for paper tests according to the standardized and partially modified norm, and compared and analyzed these aptitude tests YK Type Working Character test for a test battery. In this analysis, four basis aptitude cluster of AQE was utilized as aptitude cluster, the study for skill was carried out by the method of sampling electronic aptitude cluster in four basis ones, and the parts needed in the process of its analysis were investigated by means of Video-Tape Recording. This paper was performed with sample test by application of the inverse variation curve from learning theory and induced learning rate as a measure of the degree of proficient of technicians, and from the obtained results illustrated optimum newly-production plan of ability program and load program by the use of computer program.

  • PDF

UBET Analysis on Precision Rib-Web Forgings (리브-웨브형 정밀단조에 관한 상계요소해석)

  • 이종헌;김영호;배원병
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1211-1219
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flash and flashless forgings. The simulation for flash and flashless forgings are applied axisy mmetric and plane-strain closed-die forging with rib-web type cavity. Inverse triangular and inverse trapezoidal elements are used to analyze flashless forging. The analysis is described for merit of flashless precision forging. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load and the flow pattern are in good agreement with experimental results.

DESIGN PROGRAM FOR THE KINEMATIC AND DYNAMIC CHARACTERISTICS OF THE BUS DOOR MECHANISM

  • KWON S.-J.;SUH M.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.403-411
    • /
    • 2005
  • The bus is regarded as one of the most frequently used public transportation systems, the research and development on driving stability, safety, and convenience for drivers and passengers has tremendously increased in recent days. This paper investigated the design of the bus door mechanism composed of an actuator (or motor) and linkages. The bus door mechanism is divided into many types according to the coupling of the linkages and the driving system. The mathematical models of all types of door mechanism have been constructed for computer simulation. To design the bus door mechanism, we developed a simulation program, which automates the kinematic and dynamic analysis according to the input parameters of each linkage and the driving system. Using this program, we investigated the design parameters that affect the kinematic and dynamic characteristics of the bus door mechanism under various simulation conditions. In addition, simple examples are examined to validate the developed program.

Graphics-Oriented CAD Developmen of Kinematic Analysis And Simwlation of An Automatic Feeding System By A Curvilinear Cam. Part II : Graphics-Oriented CAD Development (곡선 캠을 이용한 자동 이송장치의 기구 해석 및 Simulation용 Graphic-Oriented CAD 개발 2)

  • 신중호;류갑상;김상진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.269-272
    • /
    • 1987
  • This paper is concerned on kinematic analysis and simulation of an automatic feeding mechanism subjected by the motion of a curvilinear inverse cam. The main objection is the development of computer-aided design (CAD) program for simulating the motion of the cam-feeding mechanism using computer-graphics. A computer program CACAFS (Computer-Aided Cam and Automatic Feeding System) is independent of computer hardware used. The program is also interactive using a menu-selection technique. As the second part of the paper for the motion simulation of the cam-feeding system, this paper discusses the state-of-art for CAD. The first part of the paper presents the algorithm to simulate the notion of the cam-feeding mechanism.

  • PDF

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

  • Byun, Wan-Il;Kim, Seung-Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The IPSAP which is a finite element analysis program has been developed for high parallel performance computing. This program consists of various analysis modules - stress, vibration and thermal analysis module, etc. The M orthogonal block Lanczos algorithm with shiftinvert transformation is used for solving eigenvalue problems in the vibration module. And the multifrontal algorithm which is one of the most efficient direct linear equation solvers is applied to factorization and triangular system solving phases in this block Lanczos iteration routine. In this study, the performance enhancement procedures of the IPSAP are composed of the following stages: 1) communication volume minimization of the factorization phase by modifying parallel matrix subroutines. 2) idling time minimization in triangular system solving phase by partial inverse of the frontal matrix and the LCM (least common multiple) concept.

  • PDF