• 제목/요약/키워드: Inverse Jacobian

검색결과 88건 처리시간 0.026초

Optimal control approach to resolve the redundancy of robot manipulators

  • Kim, Sung-Woo;Leen, Ju-Jang;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.234-239
    • /
    • 1993
  • Most of the control problem is for the redundant manipulators use the pseudo-inverse control, thit is, the redundancy is resolved by the pseudo-inverse of the Jacobian matrix and then the controller is designed based on this resolution. However, this pseudo-inverse control has some problems when the redundant robot repeats the cyclic tasks. This is because the pseudo-inverse resolution is a local solution that generates the different configurations of the robot arm for the same hand position. Therefore it is necessary to find the global solution that maintains the optimal configuration of the robot for the repetitive tasks. In this paper, we want to propose a redundancy resolution method by the optimal theory that uses the calculus of variation. The problem formulations are : first to convert the optimal resolution problem to an optimal control problem and then to resolve the redundancy using the necessary conditions of optimal control.

  • PDF

일반역행열(一般逆行列)을 이용(利用)한 케이블네트 구조물(構造物)의 형상결정에 관한 연구 (A Study on the Shape Finding of Cable-Net Structures Introducing General Inverse Matrix)

  • 서삼열;이장복
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.75-84
    • /
    • 2002
  • In this study, the 'force density method' for shape finding of cable net structures is presented. This concept is based on the force-length ratios or force densities which are defined for each branch of the net structures. This method renders a simple linear 'analytical form finding' possible. If the free choice of the force densities is restricted by further condition, the linear method is extended to a nonlinear one. The nonlinear one can be applied to the detailed computation of networks. In this paper, the general inverse matrix is introduced to solve the nonlinear equilibrium equation including Jacobian matrix which is rectangular matrix. Several examples for linear and nonlinear analysis applied additional constraints are presented. It is shown that the force density method is suitable for form finding of cable net and the general inverse matrix can be applied to solve the nonlinear equation without Lagrangian factors.

  • PDF

손목오프셋을 갖는 6축 로봇을 위한 효과적인 역기구학 해 방법 (An Efficient Inverse Kinematics Solution Method for the 6 Axes Robot with Offest Wrist)

  • 범진환;임생기;손명현
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1421-1429
    • /
    • 1994
  • An algorithm is developed for solving the inverse kinematic problem of a 6-degree-of-freedom robot with a wrist offset for which the closed form inverse solutions are not obtainable, but knowledge of one joint variable allows closed form solutions of the remaining joint variables. The algorithm does not require Forward Kinematics nor Jacobian but uses the implicit kinematic relationships between joint variables and the given hand position. An iterative back substitution method is used to solve the inversion and the optimal conditions of the convergence are incoporated. An example is given to illustrate the concepts, the solution procedure and its convergency.

유사 역행렬을 이용한 여유자유도 3차원 유연 매니퓰레이터의 위치 및 진동제어 (Position and Vibration Control of a Spatial Redundant Flexible Manipulator by using Pseudo-inverse of Jacobian)

  • 김진수
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.66-72
    • /
    • 2001
  • In this paper, by using pseudo-inverse matrix of the spatial redundant flexible manipulators, a position control method and its effect in vibration suppression was presented. Vibration suppression control was developed using lumped mass spring model of the flexible manipulators. With 2 elastic links and 7 rotory joint manipulator ADAM, (1)position control for no redundancy, and (2)position control for one redundant DOF(degree of freedom) were tested. The objective of this experiment is to show the effect of position control, using pseudo-inverse matrix. toward the improvement of operation, and at the same time, to reduce the vibration of the link and the magnitude of the joint torque.

  • PDF

영상특징을 이용한 로봇의 시각적 구동 방법 (Visual Servoing of an Eye-In-Hand Robot Based on Features)

  • 장원;정명진;변증남
    • 대한전자공학회논문지
    • /
    • 제27권11호
    • /
    • pp.32-41
    • /
    • 1990
  • 본 논문에서는 시각정보에 의하여 로봇을 제어하기위해 영상으로부터 추출되는 feature를 이용하는 한 방법을 제안한다. 특별히 feature에 대한 수학적인 정의를 제안하였으며 로봇의 움직임과 feature vector의 미소한 변화 사이의 관계를 기술하였다. 이 과정에서 feature jacobian matrix와 그의 gene-ralized inverse가 사용되었다. 로봇 자유도의 수보다 많은 feature를 사용하면 visual servoing의 성능을 향상시킬 수 있었다. 여러 예를 통하여, 본 논문에서 제안된 방법이 유효함을 보였다.

  • PDF

스튜어트 플랫폼의 순방향/역방향 힘 전달 해석 (The Forward/Inverse Force Transmission Analyses of the Stewart Platform)

  • 김한성;최용제
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.200-208
    • /
    • 1999
  • The statics relation of the Stewart platform has been investigated from the viewpoint of the forward and inverse force transmission analyses. Two eigenvalue problems corresponding to the forward and inverse force transmission analyses have been formulated. The forward force transmission analysis is to determine the ranges of the magnitudes of the force and moment generated at the end-effector for the given magnitude of linear actuator forces. In reverse order, the inverse force transmission analysis is to find the range of the magnitude of actuator forces for the given ranges of the magnitudes of the force and moment at the end-effector. The inverse force transmission analysis is important since it can provide a designer with a valuable information about how to choose the linear actuators. It has been proved that two eigenvalue problems have a reciprocal relation, which implies that solving either of the eigenvalue problems may complete the forward/inverse force transmission analysis. A numerical example has been also presented.

  • PDF

MT 자료의 3차원 역산 개관 (Review on the Three-Dimensional Inversion of Magnetotelluric Date)

  • 김희준;남명진;한우리;최지향;이태종;송윤호;서정희
    • 지구물리와물리탐사
    • /
    • 제7권3호
    • /
    • pp.207-212
    • /
    • 2004
  • 자기지전류(MT) 자료의 3차원 역산에 대해 소개한다. MT 자료의 역산 문제는 기본적으로 악조건이므로 유일한 해가 존재하지 않는다. 이러한 비유일성을 줄이고 정확한 역산해를 구하기 위해서는 역산 시 사전정보를 추가하는 제약조건을 가해야 한다. 물리탐사 분야에서 비선형 역산에 사용되는 가장 일반적인 방법은 일련의 선형화된 역산문제를 푸는 Gauss-Newton법이다. 이 알고리듬은 수렴 시, 모델 공간에서 역산문제에 대한 목적함수를 최소화하는 최적해를 준다. 그러나 이러한 반복적 선형화기법은 3차원 MT 역산의 경우 Jacobian 행렬을 구하기 힘들기 때문에 그 유용성에 한계가 있다. 이러한 어려움은 CG법에 의해 완화할 수 있다. 선형 CG법은 Gauss-Newton 반복의 각 단계를 근사적으로 풀기 위해서 사용된다. 한편 비선형 CG법은 목적함수의 최소화에 직접적으로 적용된다. 이들 CG법은 Jacobian 행렬의 계산 및 대형 선형방정식의 해를 반복 당 세 번의 모델링으로 대치할 수 있어서 3차원 역산에 적합하다.

준역행렬과 투영행렬을 이용한 구속 다물체계의 동역학 해석 (A dynamic analysis for constrained multibody systems using pseudo-inverse and projection matrix)

  • 김외조;유완석
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.170-176
    • /
    • 1998
  • In this paper, the column space and null space of the Jacobian matrix were obtained by using the pseudo-inverse method and projection matrix. The equations of motion of the system were replaced by independent acceleration components using the null space matrix. The proposed method has the following advantages. (1) It is simple to derive the null space. (2) The efficiency is improved by getting rid of constrained force terms. (3) Neither null space updating nor coordinate partitioning method is required. The suggested algorithm is applied to a three-dimensional vehicle model to show the efficiency.

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF