• 제목/요약/키워드: Inventory with constant demand

검색결과 28건 처리시간 0.021초

재고보충주기의 조정을 통한 다단계 재고시스템의 경제성 평가 (Estimation of Economical Efficiency in Multi-Echelon Inventory System through Coordination of Inventory Replenishment Period)

  • 김명훈;김병곤
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2007년도 춘계학술대회
    • /
    • pp.198-208
    • /
    • 2007
  • Recently business enterprises have forced to face in fierce competition in today's global markets due to the short life cycles of products and the higher expectation of customers. Together with continuing advances in communications and transportation technologies, these environments have motivated the continuous evolution of the supply chain and the management techniques. This paper consider three-echelon inventory system which consist of one manufacturer, one distributor and N retailers for a single product under assumption of constant demand. This paper propose the inventory replenishment period using heuristic method and order policy through coordination of inventory replenishment period. The simulation results show that decrease the total cost of the three-echelon inventory system.

  • PDF

Modified Economic Order Quantity Under the Criterion of Rate of Return

  • Tcha, Dong-Wan
    • 대한산업공학회지
    • /
    • 제4권1호
    • /
    • pp.49-55
    • /
    • 1978
  • This paper presents a new method, called a modified economic order quantity method, for determining the optimal inventory policy, which uses the rate of return as its decision criterion. Especially for the simplest possible inventory system with constant demand rate, no backlogging, no lead time, etc., the formula for the optimal order policy is derived. Also mentioned are the relative merits and shortcomings of this method compared to the conventional EOQ model.

  • PDF

단일 공급자 다수 구매자 공급체인에서 통합 생산 및 재고 모형 (An Integrated Production and Inventory Model in a Single-Vendor Multi-Buyer Supply Chain)

  • 장석화
    • 산업경영시스템학회지
    • /
    • 제38권3호
    • /
    • pp.117-126
    • /
    • 2015
  • This paper is to analyze an integrated production and inventory model in a single-vendor multi-buyer supply chain. The vendor is defined as the manufacturer and the buyers as the retailers. The product that the manufacturer produces is supplied to the retailers with constant periodic time interval. The production rate of the manufacturer is constant for the time. The demand of the retailers is constant for the time. The cycle time of the vendor is defined as the elapsed time from the start of the production to the start of the next production, while the cycle times of the buyer as the elapsed time between the adjacent supply times from the vendor to the buyer. The cycle times of the vendor and the buyers that minimizes the total cost in a supply chain are analyzed. The cost factors are the production setup cost and the inventory holding cost of the manufacturer, the ordering cost and the inventory holding cost of the retailers. The cycle time of the vendor is investigated through the cycle time that satisfies economic production quantity with the production setup cost and the inventory holding cost of the manufacturer. An integrated production and inventory model is formulated, and an algorithm is developed. An numerical example is presented to explain the algorithm. The solution of the algorithm for the numerical examples is compared with that of genetic algorithm. Numerical example shows that the vendor and the buyers can save cost by integrated decision making.

Optimal Restocking Policy of an Inventory with Constant Demand

  • Ki, Jeong Jin;Lim, Kyung Eun;Lee, EuiYong
    • Communications for Statistical Applications and Methods
    • /
    • 제11권3호
    • /
    • pp.631-641
    • /
    • 2004
  • In this paper, a model for an inventory whose stock decreases with time is considered. When a deliveryman arrives, if the level of the inventory exceeds a threshold $\alpha$, no stock is delivered, otherwise a delivery is made. It is assumed that the size of a delivery is a random variable Y which is exponentially distributed. After assigning various costs to the model, we calculate the long-run average cost and show that there exist unique value of arrival rate of deliveryman $\alpha$, unique value of threshold $\alpha$ and unique value of average delivery m which minimize the long-run average cost.

Collaboration Inventory System with Limited Resources and Weibull Distribution Deterioration

  • Wee, Hui-Ming;Law, Sh-Tyan;Yu, Jonas
    • Industrial Engineering and Management Systems
    • /
    • 제6권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The objective of this study is to develop an optimal joint cost from the perspectives of both the manufacturer and the retailer. The integrated production-inventory model with Weibull distribution deteriorating items is assumed to have a constant demand rate. A limited retailer storage space and multiple delivery per order are considered in this model. A numerical example including the sensitivity analysis is given to validate the results of the production-inventory model.

상습관(商習慣)에 의한 재고금리(在庫金利)를 고려한 단일제조(單一製造)라인의 복수제품(複數製品) 생산계획(生産計劃) (A Single-Line Multi-Product Planning Problem Considering Inventory Interest Based on the Business Custom)

  • 박승헌
    • 대한산업공학회지
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 1987
  • This paper deals with a single-facility multiproduct lot-size model requiring consideration of setup costs. Each product is demanded at the constant rate per unit time in the next particular period. Due to the limitation of the production capacity, some productions of total demand requirement in that period must be pre-produced. The aim of this project is to determine when and how much of each product to make in order to minimize the total setup costs and inventory carrying-costs of all products. Also this paper contains the further realistic treatment of inventory carrying-costs.

  • PDF

판매자-구매자 생산-재고통합 문제를 위한 Mixed Approach (A Mixed Approach for Single-Vendor-Single-Buyer Production Inventory Integration Problem)

  • 이동주
    • 산업경영시스템학회지
    • /
    • 제39권4호
    • /
    • pp.7-14
    • /
    • 2016
  • Unlike most researches that focus on single manufacturer or single buyer, this research studies the cooperation policy for two participants of supply chain such as single vendor and single buyer. Especially, this paper deals with single vendor-single buyer integrated-production inventory problem. If the buyer orders products, then the vendor will start to make products and then the products will be shipped from the vendor to the buyer many times. The buyer is supposed to order again when the buyer's inventory level hits reorder point during the last shipment and this cycle keeps repeated. The buyer uses continuous review inventory policy and customer's demand is assumed to be probabilistic. The contribution of this paper is to present a mixed approach and derive its cost function. The existing policy assumes that the size of shipping batch from single vendor to single buyer is increasing, called Type 1, or constant, called Type 2. In mixed approach, the size of shipping batch is increasing at the beginning part of the cycle, and then its size is constant at the ending part of the cycle. The number of shipping for Type 1 and Type 2 in a cycle in mixed approach is determined to minimize total cost. The relationship between parameters, for example, the holding cost per product, the set up cost per order, and the shortage cost per item and decision variables such as order quantity, safety factor, the number of shipments, and shipment increasing factor is figured out via sensitivity analysis. Finally, it is statistically proved that the mixed approach is superior to the existing approaches.

Economic production quantity with expontial deterioration

  • Hwang, Hark;Kim, Kap-Hwan
    • 한국경영과학회지
    • /
    • 제4권1호
    • /
    • pp.53-58
    • /
    • 1979
  • Production lot sizing problem for a system with exponentially decaying inventory is considered. From the exact cost function developed under conditions of constant demand and no shortages permitted, an approximate optimal solution is derived. The formula is compared with those of the exact solution obtained from numerical procedure and other existing approximate solution. Finally some notable properties of the formula are investigated and shown to be consistent.

  • PDF

간헐적인 운전시간 손실하에 공정-저장조 망구조의 최적설계 (Optimal Designofa Process-Inventory Network Under Infrequent Shutdowns)

  • 이경범
    • 제어로봇시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.563-568
    • /
    • 2013
  • The purpose of this study is to find the analytic solution for determining the optimal capacity (lot-size) of a batch-storage network to meet the finished product demand under infrequent shutdowns. Batch processes are bound to experience random but infrequent operating time losses. Two common remedies for these failures are duplicating another process or increasing the process and storage capacity, both of which are very costly in modern manufacturing systems. An optimization model minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units is pursued with the framework of a batch-storage network of which flows are susceptible to infrequent shutdowns. The superstructure of the plant consists of a network of serially and/or parallel interlinked batch processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors.A novel production and inventory analysis method, the PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model stems from the fact it provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance a proper and quick investment decision at the early plant design stagewhen confronted with diverse economic situations.

제고분배 시스템의 서비스수준과 안전재고: 변동 수요, 변동 조달기간 모형 (Analysis of Service Level and Safety Stock for an Inventory Distribution System: Variable Demand and Variable Lead Time Model)

  • 박명규;윤승철
    • 산업경영시스템학회지
    • /
    • 제20권42호
    • /
    • pp.21-30
    • /
    • 1997
  • This research fundamentally deals with an analysis of service level for a multi-level inventory distribution system which is consisted of a central distribution center and several branches being supplied stocks from the distribution center, Under continuous review policy, the distribution center places an order for planned order quantity to an outside supplier, and the order quantity is received after a certain lead time. Also, each branch places an order for particular quantity to its distribution center, and receives the order quantity after a lead time. In most practical distribution environment, demands and lead times are generally not fixed or constant, but variable. And these variabilities make the analysis more complicated. Thus, the main objective of this research is to suggest a method to compute the service level at each depot, that is, the distribution center and each branch with variable demands and variable lead times. Further, the model will give an idea to keep the proper level of safety stocks that can attain effective or expected service level for each depot.

  • PDF