• Title/Summary/Keyword: Inventory Cycle

Search Result 267, Processing Time 0.026 seconds

Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector ('탄소발자국' 개념의 발전 과정과 농림 부문에서의 활용 전망)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.358-383
    • /
    • 2015
  • The concept of 'carbon footprint' has been developed as a means of quantifying the specific emissions of the greenhouse gases (GHGs) that cause global warming. Although there are still neither clear definitions of the term nor rules for units or the scope of its estimation, it is broadly accepted that the carbon footprint is the total amount of GHGs, expressed as $CO_2$ equivalents, emitted into the atmosphere directly or indirectly at all processes of the production by an individual or organization. According to the ISO/TS 14067, the carbon footprint of a product is calculated by multiplying the units of activity of processes that emit GHGs by emission factor of the processes, and by summing them up. Based on this, 'carbon labelling' system has been implemented in various ways over the world to provide consumers the opportunities of comparison and choice, and to encourage voluntary activities of producers to reduce GHG emissions. In the agricultural sector, as a judgment basis to help purchaser with ethical consumption, 'low-carbon agricultural and livestock products certification' system is expected to have more utilization value. In this process, the 'cradle to gate' approach (which excludes stages for usage and disposal) is mainly used to set the boundaries of the life cycle assessment for agricultural products. The estimation of carbon footprint for the entire agricultural and forestry sector should take both removals and emissions into account in the "National Greenhouse Gas Inventory Report". The carbon accumulation in the biomass of perennial trees in cropland should be considered also to reduce the total GHG emissions. In order to accomplish this, tower-based flux measurements can be used, which provide a direct quantification of $CO_2$ exchange during the entire life cycle. Carbon footprint information can be combined with other indicators to develop more holistic assessment indicators for sustainable agricultural and forestry ecosystems.

Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction (소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구)

  • Park, Sun Hee;Min, Jae Hong;Lee, Tae-Ho;Wi, Myung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.863-870
    • /
    • 2016
  • We investigated the physical/chemical phenomena that a slow loss of $CO_2$ inventory into sodium after the sodium-$CO_2$ boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical $CO_2$ Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as $CO_2$ was injected through the nozzle at $300{\sim}400^{\circ}C$ in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after $CO_2$ injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-$CO_2$ fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of $CO_2$ (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature ($400{\sim}500^{\circ}C$), or the diameter of the $CO_2$ nozzle (0.2~0.8 mm). Velocities at the $CO_2$ nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

Release Characteristics of Fission Gases with Spent Fuel Burn-up during the Voloxidation and OREOX Processes (사용후핵연료의 연소도 변화에 따른 산화 및 OREOX 공정에서 핵분열기체 방출 특성)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.39-52
    • /
    • 2007
  • Quantitative analysis on release behavior of the $^{85}Kr\;and\;^{14}C$ fission gases from the spent fuel material during the voloxidation and OREOX process has been performed. This thermal treatment step in a remote fabrication process to fabricate the dry-processed fuel from spent fuel has been used to obtain a fine powder The fractional release percent of fission gases from spent fuel materials with burn-up ranges from 27,000 MWd/tU to 65,000 MWd/tU have been evaluated by comparing the measured data with these initial inventories calculated by ORIGEN code. The release characteristics of $^{85}Kr\;and\;^{14}C$ fission gases during the voloxidation process at $500^{\circ}C$ seem to be closely linked to the degree of conversion efficiency of $UO_2\;to\;U_3O_8$ powder, and it is thus interpreted that the release from grain-boundary would be dominated during this step. The high release fraction of the fission gas from an oxidized powder during the OREOX process would be due to increase both in the gas diffusion at a temperature of $500^{\circ}C$ in a reduction step and in U atom mobility by the reduction. Therefore, it is believed that the fission gases release inventories in the OREOX step come from the inter-grain and inter-grain on $UO_2$ matrix. It is shown that the release fraction of $^{85}Kr\;and\;^{14}C$ fission gases during the voloxidation step would be increased as fuel burn-up increases, ranging from 6 to 12%, and a residual fission gas would completely be removed during the OREOX step. It seems that more effective treatment conditions for a removal of volatile fission gas are of powder formation by the oxidation in advance than the reduction of spent fuel at the higher temperature.

  • PDF

Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's (국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가)

  • Kang, Duk-Won;Yang, Yang-Hee;Park, Kyong-Rok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This study has been focused on determining the chemical composition of $^{14}C$ - in terms of both organic and inorganic $^{14}C$ contents - in reactor coolant from 3 different PWR's reactor type. The purpose was to evaluate the characteristic of $^{14}C$ that can serve as a basis for reliable estimation of the environmental release at domestic PWR sites. $^{14}C$ is the most important nuclide in the inventory, since it contributes one of the main dose contributors in future release scenarios. The reason for this is its high mobility in the environment, biological availability and long half-life(5730yr). More recent studies - where a more detailed investigation of organic $^{14}C$ species believed to be formed in the coolant under reducing conditions have been made - show that the organic compounds not only are limited to hydrocarbons and CO. Possible organic compounds formed including formaldehyde, formic acid and acetic acid, etc. Under oxidizing conditions shows the oxidized carbon forms, possibly mainly carbon dioxide and bicarbonate forms. Measurements of organic and inorganic $^{14}C$ in various water systems were also performed. The $^{14}C$ inventory in the reactor water was found to be 3.1 GBq/kg in PWR of which less than 10% was in inorganic form. Generally, the $^{14}C$ activity in the water was divided equally between the gas- and water- phase. Even though organic $^{14}C$ compound shows that dominant species during the reactor operation, But during the releasing of $^{14}C$ from the plant stack, chemical forms of $^{14}C$ shows the different composition due to the operation conditions such as temperature, pH, volume control tank venting and shut down chemistry.

  • PDF

Profiling Approach for the Choice between Speculation and Postponement Strategy in Supply Chain Management (공급사슬관리의 예측전략과 지연전략 선택을 위한 프로파일링 접근법)

  • Kang, Sung-Wook;Kim, Gyu-Bae
    • Journal of Distribution Science
    • /
    • v.12 no.4
    • /
    • pp.47-54
    • /
    • 2014
  • Purpose - The postponement strategy, which delays the form, place, and production of products as late as possible, has been widely considered as a competitive supply chain management scheme in an era of mass customization and modular manufacturing. An interesting business phenomenon is that not all manufacturing/logistics firms choose the postponement strategy. Given that postponement is a counter-measure to speculation, which has some advantages under certain environments, the current imprudent inclination toward the postponement strategy may cause firms to lose the potential of the speculation strategy, an alternative strategy in supply chain management. Building on the logistics and manufacturing literature, this study examines characteristics of two contrasting strategies, postponement and speculation, and major factors favoring each strategy. Research design, data, and methodology - We apply the profiling approach to two business cases, HP printer and LG mobile phone. The profiling approach is a method of choosing a particular strategy aligned with environmental factors. While various approaches have been used to check the fit between a business strategy and environmental factors, the literature on manufacturing strategy and logistics has commonly adopted the profiling approach. Major factors used in profiling variables are derived from the literature. Two samples, HP printer and LG mobile phone, are selected, because they represent major characteristics appropriate for each strategy. The profiling is based on data from semi-organized interviews with managers. Results - The profiling approach shows that the postponement strategy is a suitable one for HP printers. Most factors, such as product life cycle, large production volume, low-price, product value, and monetary density, support delaying end products until as late as possible. Despite some exceptions, such as delivery time and economy of scale, our analysis states that the overall profile of HP printer is favorable for the postponement strategy. On the other hand, LG mobile phone may adapt the speculation strategy. Although it has large production volume and low delivery frequency, most characteristics support the speculation strategy for this product. An interesting finding is that, despite common perception that advanced technology products such as mobile telephones favor the postponement strategy, profiling proposes the speculation strategy for this product. Conclusions - Our analysis shows that speculation is not the universal option for supply chain management, and that, when choosing a specific strategy, one should consider many factors simultaneously. A major implication of our work is to emphasize the role of environmental factors such as supply chain variables in choosing an inventory strategy, and the importance of fit rather than solely strategic orientation. A theoretical contribution is to demonstrate the benefit of the simultaneous consideration of business variables in choosing specific strategies. For practitioners, our work leads us to consider the existence and the potential of speculation as a counter-measure to postponement. In addition, the comprehensive framework in this research may be instantly used in examining a practical strategy.

Study on Level of Anxiety on Admitted Patient도s Family (입원환자 가족의 불안정도에 관한 연구)

  • 김현실;김주희
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.1
    • /
    • pp.42-53
    • /
    • 1983
  • The purpose of this study is to help the care of patient and to his family through comparison of the level of anxiety which between the family of admitted patient and the family without in patient, and to his family through comparison of the level of anxiety which between the family of admitted patient and the family without inpatient and exclude the factors which raised the level of anxiety in them. The experimental group in this study were samples of 200 patient's family selected by random sampling in H. University hospital located in Seoul (Department of patient were internal medicine, surgery, pediatrics and neuropsychiatry). The control group were samples of 70 family without inpatient selected by random sampling in Seoul. The data were collected through STAI (State-Trait Anxiety Inventory) by Spielberger (1970) for measurement to level of state and trait anxiety from April 1st to April 15th in 1982. The contents of data analysis by EDPS included the difference of level of anxiety between experimental and control group, correlationship between general characteristics of experimental group and level of anxiety, and correlation of trait and state anxiety in experimental group. The Findings of this study were as follows: 1) Level of anxiety of experimental group is higher than control group. 2) In the correlation between general characteristics and level of anxiety of experimental group, there were no significant difference which revealed in correlation with age of family member, family life cycle, marital status, the relation between patient and family member, the degree of symptom, number of admission, admission or nonadmission of medical insurance, number of family member, and division of disease to level of anxiety However, according to the sex of family member, hospitalization period, a monthly income of family, the degree of confidence toward medical team, religion of family, academic background of family, a tendency of significant differences to level of anxiety were seen. To put them in the concrete, they were as follow; a) Level of. anxiety on female family member is higher than male in experimental group. b) Admission period of patient is positively related to the level of anxiety of patient's family. c) The degree of confidence of patient's family toward medical team is in inverse proportion to the level of anxiety. d) A monthly income of patient's family is in inverse proportion to the level of anxiety. e) Levlt of anxiety of believer in patient's family is lower than unbeliever. f) The academical background of patient's family is in inverse proportion to the level of anxiety g) Level of state anxiety of patient's family at the time of admission is positively related to the level of trait anxiety.

  • PDF

Strength and CO2 Reduction of Fiber-Reinforced Cementitious Composites with Recycled Materials (자원순환형 재료를 사용한 섬유보강 시멘트 복합체(FRCCs)의 강도 및 CO2 저감에 관한 연구)

  • Lee, Jong-Won;Kim, Sun-Woo;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.379-387
    • /
    • 2017
  • The objective of this study is to develop sustainable PVA fiber-reinforced cementitious composites (FRCCs) that could exhibit comparable strength level to normal PVA FRCCs with no recycled materials. To evaluate mechanical properties of the FRCCs, compressive, flexural and direct tensile tests were conducted. In addition to the test, to calculate amount of carbon dioxide ($CO_2$) emission at the stage of manufacturing the FRCCs, life cycle inventory data base (LCI DB) were referenced from domestic and Japan. From the test results, the mechanical properties such as compressive, flexural and direct tensile strengths were decreased as the replacement ratio of recycled materials increased. And it was determined that the amount of $CO_2$ emission was reduced for the specimens with higher water-binder ratio (W/B) and replacement ratios. It was also found that binder intensity ($B_i$) value was higher as replacement ratio of fly ash (FA) increased. This result means that larger amount of FA is need to deliver one unit of a given performance indicator (1 MPa of strength) of FRCCs compared to that of ordinary portland cement (OPC). As a result, it could be concluded that FRCCs with W/B 45% replaced by FA 25% and recycled sand (RS) 25% is desirable for both target performance and $CO_2$ emission.

Current Status and Projection of Spent Nuclear Fuel for Geological Disposal System Design (심지층 처분시스템 설계를 위한 사용후핵연료 현황 분석 및 예측)

  • Cho, Dong-Keun;Choi, Jong-Won;Hahn, Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.87-93
    • /
    • 2006
  • Inventories, and characteristics such as dimension, fuel rod array, weight, $^{235}U$ enrichment, and discharge burnup of spent nuclear fuel (SNF) generated from existing and planed nuclear power plants based on National 2nd Basic Plan for Electric Power Demand and Supply were investigated and projected to support geological disposal system design. The historical and projected inventory by the end 2057 is expected to be 20,500 and 14,800MTU for PWR and CANDU spent nuclear fuel, respectively. The quantity of SNF with initial $^{235}U$ enrichment of 4.5 wt.% and below was shown to be 96.5% in total. Average burnup of SNF revealed $\sim36$ GWD/MTU and $\sim40$ GWD/MTU for the period of 1994-1999 and 2000-2003, respectively. It is expected that the average burnup of SNF will be $\sim45$ GWD/MTU at the end of 2000's. From the comprehensive study, it was concluded that the imaginary SNF with $16\times16$ Korean Standard Fuel Assembly, cross section of $21.4cm\times21.4cm$, length of 453cm, mass of 672 kg, initial $^{235}U$ enrichment of 4.5 wt.%, discharge burnup of 55 GWD/MTU could cover almost all SNFs to be produced by 2057.

  • PDF

Current Status of the Spent Filter Waste and Consideration of Its Treatment Method in KAERI (KAERI 저장 폐필터의 현황과 처리방법에 관한 고찰)

  • Ji, Young-Yong;Hong, Dae-Seok;Kang, Il-Sik;Shon, Jong-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.257-265
    • /
    • 2007
  • Spent filter wastes of about 1,000 units (200 L) have been stored in the waste storage facility of the Korea Atomic Energy Research Institute since its operation. At the moment, to secure space in a waste storage facility as well as to efficiently manage spent filter wastes, it is necessary to conduct a compaction treatment of these spent filters, and finally, to repack the compacted spent filters into a 200 liter drum. To do that, the spent filter wastes were first classified according to their generation facilities, their generation date and their surface dose rate by investigating the inventory of the spent filters. In order to repack a compacted spent filter in a 200 liter drum, it is first necessary to conduct a radionuclide assessment of a spent filter before compacting it. Therefore, after taking a representative sample from a spent filter without a dismantlement, the nuclide analysis for it will be conducted. And then, after putting a spent filter into a regular drum by conducting the columnar shaping of the hexahedral form of a spent filter, the compaction treatment of the shaped spent filter will be conducted by vertically compacting it.

  • PDF