본 논문에서는 대규모 영상 데이터베이스로부터 모양 영상에 대한 검색을 빠르고 효율적으로 수행하기 위해 해싱기법을 변형한 색인구조와 검색방법을 제안한다. 제안된 색인 구조는 이진 모양 영상(binary shape image)의 불변 모멘트 집합(invariant moments set)을 특징 벡터로 사용하여 다차원으로 구성된다. 이 색인 구조를 기반으로 제안된 해싱을 변형한 검색방법은 기존의 방법들에 비해 검색공간을 줄임으로써 검색속도를 높인다. 본 논문에서 제안한 색인구조와 검색방법을 1000개의 이진 모양 영상들에 적용해 본 결과 검색공간이 전체 공간의 10% 미만으로 줄어드는 효과가 있었다.
In this paper, we propose a human face detection algorithm using adaptive skin color model and neural networks. To attain robustness in the changes of illumination and variability of human skin color, we perform a color segmentation of input image by thresholding adaptively in modified hue-saturation color space (TSV). In order to distinguish faces from other segmented objects, we calculate invariant moments for each face candidate and use the multilayer perceptron neural network of backpropagation algorithm. The simulation results show superior performance for a variety of poses and relatively complex backgrounds, when compared to other existing algorithm.
In this paper, the model reduction method of the linear time invariant continuous systems is proposed. The denominator of reduced order model is determined by the eigenvalue selected considering the error of the power series that exists between original system and reduced order system at each time moments. And the numerator of model is founded by the time moment matching method. The method suggested is compared with other various methods in examples.
In this paper, feature vectors composed of 6 features of Fourier spectrum of 2-D image at each projection angle and 7 features of invariant moments are defined. The feature are extracted by optical Fourier transformer and Radon transformer. After extracting the feature, the input pattern is recognized using the squared Mahalanobis distance.
A cold & hot rolling coil production line of iron nill consists of a kind of coherent automatic process, but an automatic labelling process still had technical difficulties in the automation of its process. The reason for difficulties in building an automatic process is that quantitative data for each rolled coil from every shipping is not easy to receive from the previous process. it is not possible to apply for a general and simple purpose robot that is actually worked through a taught position to the process because the size and direction of the coi1 has differed on every shipping. From these reasons. we introduce a robot vision system to accept an expected variable situation and to ensure the stability and flexibility of the process. This paper examines a study applied for similar cases and finds the position and direction of relied coil using the moment invariant algorithm proposed by Hu. In addition. the camera calibration and position error compensation algorithm is applied by the analysis of the relationship of transition in a space coordinate system. The construction of a robot vision system proposed by this paper is a more intellectual system than that of the automatic labelling system. which is already used to the Daihen steel nill of NEW JAPAN steel mill co. Ltd in Japan, and shows a better independent operation in the field of production.
본 논문에서는 화상자료의 특성인 이웃 화소간의 종속성을 표현하는데 적합한 깁스분포를 바탕으로 특징벡터를 추출하여 변형된 글자를 인식하는 새로운 방법을 제안하였다. 추출된 특징벡터는 이미지의 크기, 위치, 회전에 대하여 불변한 특성을 갖는 2차원 조건부 모멘트로 구성된다. 변형된 글자 인식을 위한 알고리즘은 특징벡터 추출하는 과정과 패턴을 인식하는 과정으로 구성하였다. (i) 특징벡터는 하나의 이미지에 대하여 추정된 조건부 깁스분포를 바탕으로 2차원 조건부 모멘트를 계산하여 추출한다. (ii) 변형된 문자 인식은 제안된 판별거리함수를 계산하여 최소거리를 산출한 미지의 변형된 문자를 원형문자로 인식한다. 제안된 방법에 대한 성능평가를 위하여, 생성된 훈련 데이터를 만들어 Workstation에서 실험 한 결과 96%이상의 인식성능이 있음을 밝혔다.
화상 데이터의 특성을 표현하는데 적합한 깁스분포를 바탕으로 특징벡터를 추출하여 패턴을 분류하는 새로운 알고리즘을 제안하였다. 특징벡터는 화상의 크기, 위치, 회전에 대해서 불변이며 접영에 대해서도 덜 민감한 특징을 갖는 2차원 모멘트들의 원소로 만들어진다. 알고리즘은 공간정보를 갖는 2차원 모멘트를 이용하여 특징벡터를 추출하는 과정과 거리함수를 이용하여 패턴을 분류하는 과정으로 구축하였다. 특징벡터는 깁스분포의 묘수를 추정하여 2차원 조건부 모멘트를 추출하여 구성한다. 패턴 분류 과정은 추출된 특징벡터로부터 제안된 판별거리함수를 계산하여 여러 원형 패턴 가운데 최소거리를 산출한 미지의 패턴을 원형패턴으로 분류한다. 제안된 방법의 성능을 검증하기 위하여 대문자와 소문자 52자로 구성된 훈련 데이터를 만들어 SUN ULTRA 10 워크스테이션에서 실험을 한 결과 98%이상의 분류성능이 있음을 밝혔다.
본 논문에서는 초음파센서 배열과 신경회로망 및 불변모멘트 벡터를 이용하여 물체의 위치이동에 무관한 3차원 물체인식과 복원을 연구함으로서 추차관리 시스템의 차종인식 응용가능성에 대하여 검토하였다. 초음파센서 배열로부터 얻어진 16$\times$8 픽셀의 데이터를 이용하여 물체의 불변모멘트 벡터를 계산하고 이를 SCL(Simple Competitive Leverning)신경회로망에 입력하여 3차원 물체를 분류하였으며, 저해상도인 16$\times$8 픽셀의 물체정보를 SCL 수정형 신경회로망에 입력하여 32$\times$32 픽셀로 해상도를 향상시켜 3차원 물체복원을 하였다. 물체의 위치가 변하여도 불변모멘트 벡터는 일정한 값을 유지하였고, 학습 후 인식율은 학습데이터의 경우는98[%]이고 시험데이터의 경우 95[%]이었으며, 3차원 32$\times$32 픽셀의 고해상도 물체정보로 복원하였다. 실험결과로부터 신경회로망과 연계된 초음파 센서는 차량의 감지뿐만 아니라 차종의 구분에도 응용가능할 것으로 생각된다.
본 논문에서는 Dynamic Space Time Warping(DSTW) 알고리즘을 이용하여 손동작을 다양한 배경에서도 정확하게 인식할 수 있는 방법을 제안한다. DSTW 알고리즘을 이용한 기존의 손동작 인식 방법은 질의영상의 매 프레임 마다 검출된 다수의 손 후보영역을 사용하여 모델영상과 시간 축 상으로 비교하는 방법이다. 그러나 기존의 DSTW 알고리즘을 이용한 손동작 인식 방법은 손을 포함하지 않은 후보영역들(배경, 팔꿈치 등)에 의해 오인식될 수 있는 경로를 생성하며, 그 결과로 사용자가 의도하지 않은 손동작으로 인식될 수 있다. 이러한 단점을 해결하기 위해서, 본 논문에서는 손 후보영역의 불변 모멘트를 이용하여 질감 정보를 추출한 후 후보영역들 사이의 유사도를 비교하였다. 제안한 방법은 유사도를 모델과 질의의 매칭비용에 가중치로 적용하였고, 다양한 실험 결과 제안한 방법이 기존의 방법에 비해 사용자의 손동작을 정확하게 인식하는 것을 확인하였다.
The discrete Gaussian-Hermite moment (DGHM) is a global feature representation method that can be applied to square images. We propose a modified DGHM (MDGHM) method and an MDGHM-based scale-invariant feature transform (MDGHM-SIFT) descriptor. In the MDGHM, we devise a movable mask to represent the local features of a non-square image. The complete set of non-square image features are then represented by the summation of all MDGHMs. We also propose to apply an accumulated MDGHM using multi-order derivatives to obtain distinguishable feature information in the third stage of the SIFT. Finally, we calculate an MDGHM-based magnitude and an MDGHM-based orientation using the accumulated MDGHM. We carry out experiments using the proposed method with six kinds of deformations. The results show that the proposed method can be applied to non-square images without any image truncation and that it significantly outperforms the matching accuracy of other SIFT algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.