• Title/Summary/Keyword: Invariant feature

Search Result 433, Processing Time 0.025 seconds

Spectral Normalization for Speaker-Invariant Feature Extraction (화자 불변 특징추출을 위한 스펙트럼 정규화)

  • 오광철
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.238-241
    • /
    • 1993
  • We present a new method to normalize spectral variations of different speakers based on physiological studies of hearing. The proposed method uses the cochlear frequency map to warp the input speech spectra by interpolation or decimation. Using this normalization method, we can obtain much improved recognition results for speaker independent speech recognition.

  • PDF

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Automatic Target Recognition by selecting similarity-transform-invariant local and global features (유사변환에 불변인 국부적 특징과 광역적 특징 선택에 의한 자동 표적인식)

  • Sun, Sun-Gu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.370-380
    • /
    • 2002
  • This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.

Design of a SIFT based Target Classification Algorithm robust to Geometric Transformation of Target (표적의 기하학적 변환에 강인한 SIFT 기반의 표적 분류 알고리즘 설계)

  • Lee, Hee-Yul;Kim, Jong-Hwan;Kim, Se-Yun;Choi, Byung-Jae;Moon, Sang-Ho;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.116-122
    • /
    • 2010
  • This paper proposes a method for classifying targets robust to geometric transformations of targets such as rotation, scale change, translation, and pose change. Targets which have rotation, scale change, and shift is firstly classified based on CM(Confidence Map) which is generated by similarity, scale ratio, and range of orientation for SIFT(Scale-Invariant Feature Transform) feature vectors. On the other hand, DB(DataBase) which is acquired in various angles is used to deal with pose variation of targets. Range of the angle is determined by comparing and analyzing the execution time and performance for sampling intervals. We experiment on various images which is geometrically changed to evaluate performance of proposed target classification method. Experimental results show that the proposed algorithm has a good classification performance.

Image Similarity Retrieval using an Scale and Rotation Invariant Region Feature (크기 및 회전 불변 영역 특징을 이용한 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Hyun-Soo;Lee, Seok-Lyong;Lim, Myung-Kwan;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.446-454
    • /
    • 2009
  • Among various region detector and shape feature extraction method, MSER(Maximally Stable Extremal Region) and SIFT and its variant methods are popularly used in computer vision application. However, since SIFT is sensitive to the illumination change and MSER is sensitive to the scale change, it is not easy to apply the image similarity retrieval. In this paper, we present a Scale and Rotation Invariant Region Feature(SRIRF) descriptor using scale pyramid, MSER and affine normalization. The proposed SRIRF method is robust to scale, rotation, illumination change of image since it uses the affine normalization and the scale pyramid. We have tested the SRIRF method on various images. Experimental results demonstrate that the retrieval performance of the SRIRF method is about 20%, 38%, 11%, 24% better than those of traditional SIFT, PCA-SIFT, CE-SIFT and SURF, respectively.

Attitude Estimation of an Aircraft using Image Data (영상데이타를 이용한 항공기 자세각 추정)

  • Park, Sung-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.44-50
    • /
    • 2011
  • This paper presents the algorithm for attitude determination of an aircraft using binary image. An image feature vector, which is invariant to translation, scale and rotation, is constructed to capture the functional relations between the feature vector and the corresponding aircraft attitude. An iterated least squares method is suggested for estimating the attitude of given aircraft using the constructed feature vector library. Simulation results show that the proposed algorithm yields good estimates of aircraft attitude in most viewing range, although a relatively large error occurs in some limited viewing direction.

Global Feature Extraction and Recognition from Matrices of Gabor Feature Faces

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.207-211
    • /
    • 2011
  • This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.

Enhanced SIFT Descriptor Based on Modified Discrete Gaussian-Hermite Moment

  • Kang, Tae-Koo;Zhang, Huazhen;Kim, Dong W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.572-582
    • /
    • 2012
  • The discrete Gaussian-Hermite moment (DGHM) is a global feature representation method that can be applied to square images. We propose a modified DGHM (MDGHM) method and an MDGHM-based scale-invariant feature transform (MDGHM-SIFT) descriptor. In the MDGHM, we devise a movable mask to represent the local features of a non-square image. The complete set of non-square image features are then represented by the summation of all MDGHMs. We also propose to apply an accumulated MDGHM using multi-order derivatives to obtain distinguishable feature information in the third stage of the SIFT. Finally, we calculate an MDGHM-based magnitude and an MDGHM-based orientation using the accumulated MDGHM. We carry out experiments using the proposed method with six kinds of deformations. The results show that the proposed method can be applied to non-square images without any image truncation and that it significantly outperforms the matching accuracy of other SIFT algorithms.

Image Retrieval Using the Color Feature and the Wavelet-Based Feature (색상특징과 웨이블렛 기반의 특징을 이용한 영상 검색)

  • 박종현;박순영;조완현
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.487-490
    • /
    • 1999
  • In this paper we propose an efficient content-based image retrieval method using the color and wavelet based features. The color features are extracted from color histograms of the global image and the wavelet based features are extracted from the invariant moments of the high-pass band image through the spatial-frequency analysis of the wavelet transform. The proposed algorithm, called color and wavelet features based query(CWBQ), is composed of two-step query operations for efficient image retrieval: the coarse level filtering operation and the fine level matching operation. In the first filtering operation, the color histogram feature is used to filter out the dissimilar images quickly from a large image database. The second matching operation applies the wavelet based feature to the retained set of images to retrieve all relevant images successfully. The experimental results show that the proposed algorithm yields more improved retrieval accuracy with computationally efficiency than the previous methods.

  • PDF

Similarity based Rotation Invariant Image Retrieval (유사도를 이용한 회전 불변 영상검색)

  • 권동현;장정동;이태홍
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.581-584
    • /
    • 1999
  • In order to retrieve the rotated image within database by the content based image retrieval system, the algorithms with rotation robustness is usually applied in the procedure of the feature extraction. In that case, it requires much calculation time for feature extraction and much indexed data for feature indexing. Thus. in this paper. we propose the rotation robust algorithm using the block variance of the projected vector. The algorithm does not require additional calculation for feature extraction and is executed within query time by comparing the extracted data. Proposed method can be processed through database including various size of images with shape information and executed with fast response time in implementation.

  • PDF