• Title/Summary/Keyword: Invariant feature

Search Result 433, Processing Time 0.032 seconds

On the Study of Rotation Invariant Object Recognition (회전불변 객체 인식에 관한 연구)

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.405-408
    • /
    • 2010
  • This paper presents a new feature extraction technique, correlation coefficient and Manhattan distance (MD) based method for recognition of rotated object in an image. This paper also represented a new concept of intensity invariant. We extracted global features of an image and converts a large size image into a one-dimensional vector called circular feature vector's (CFVs). An especial advantage of the proposed technique is that the extracted features are same even if original image is rotated with rotation angles 1 to 360 or rotated. The proposed technique is based on fuzzy sets and finally we have recognized the object by using histogram matching, correlation coefficient and manhattan distance of the objects. The proposed approach is very easy in implementation and it has implemented in Matlab7 on Windows XP. The experimental results have demonstrated that the proposed approach performs successfully on a variety of small as well as large scale rotated images.

GPU-Based Optimization of Self-Organizing Map Feature Matching for Real-Time Stereo Vision

  • Sharma, Kajal;Saifullah, Saifullah;Moon, Inkyu
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2014
  • In this paper, we present a graphics processing unit (GPU)-based matching technique for the purpose of fast feature matching between different images. The scale invariant feature transform algorithm developed by Lowe for various feature matching applications, such as stereo vision and object recognition, is computationally intensive. To address this problem, we propose a matching technique optimized for GPUs to perform computations in less time. We optimize GPUs for fast computation of keypoints to make our system quick and efficient. The proposed method uses a self-organizing map feature matching technique to perform efficient matching between the different images. The experiments are performed on various image sets to examine the performance of the system under varying conditions, such as image rotation, scaling, and blurring. The experimental results show that the proposed algorithm outperforms the existing feature matching methods, resulting in fast feature matching due to the optimization of the GPU.

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

Fingerprint Verification Based on Invariant Moment Features and Nonlinear BPNN

  • Yang, Ju-Cheng;Park, Dong-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.800-808
    • /
    • 2008
  • A fingerprint verification system based on a set of invariant moment features and a nonlinear Back Propagation Neural Network(BPNN) verifier is proposed. An image-based method with invariant moment features for fingerprint verification is used to overcome the demerits of traditional minutiae-based methods and other image-based methods. The proposed system contains two stages: an off-line stage for template processing and an on-line stage for testing with input fingerprints. The system preprocesses fingerprints and reliably detects a unique reference point to determine a Region-of-Interest(ROI). A total of four sets of seven invariant moment features are extracted from four partitioned sub-images of an ROI. Matching between the feature vectors of a test fingerprint and those of a template fingerprint in the database is evaluated by a nonlinear BPNN and its performance is compared with other methods in terms of absolute distance as a similarity measure. The experimental results show that the proposed method with BPNN matching has a higher matching accuracy, while the method with absolute distance has a faster matching speed. Comparison results with other famous methods also show that the proposed method outperforms them in verification accuracy.

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

Study of Methodology for Recognizing Multiple Objects (다중물체 인식 방법론에 관한 연구)

  • Lee, Hyun-Chang;Koh, Jin-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.51-57
    • /
    • 2008
  • In recent computer vision or robotics fields, the research area of object recognition from image using low cost web camera or other video device is performed actively. As study for this, there are various methodologies suggested to retrieve objects in robotics and vision research areas. Also, robotics is designed and manufactured to aim at doing like human being. For instance, a person perceives apples as one see apples because of previously knowing the fact that it is apple in one's mind. Like this, robotics need to store the information of any object of what the robotics see. Therefore, in this paper, we propose an methodology that we can rapidly recognize objects which is stored in object database by using SIFT (scale invariant feature transform) algorithm to get information about the object. And then we implement the methodology to enable to recognize simultaneously multiple objects in an image.

  • PDF

An Algorithm to Obtain Location Information of Objects with Concentric Noise Patterns (동심원 잡음패턴을 가진 물체의 위치정보획득 알고리즘)

  • 심영석;문영식;박성한
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1393-1404
    • /
    • 1995
  • For the factory automation(FA) of production or assembly lines, computer vision techniques have been widely used for the recognition and position-control of objects. In this application, it is very important to analyze characteristic features of each object and to find an efficient matching algorithm using the selected features. If the object has regular or homogeneous patterns, the problem is relatively simple. However, If the object is shifted or rotated, and if the depth of the input visual system is not fixed, the problem becomes very complicated. Also, in order to understand and recognize objects with concentric noise patterns, it is more effective to use feature-information represented in polar coordinates than in cartesian coordinates. In this paper, an algorithm for the recognition of objects with concentric circular noise-patterns is proposed. And position-conrtol information is calculated with the matching result. First, a filtering algorithm for eliminating concentric noise patterns is proposed to obtain concentric-feature patterns. Then a shift, rotation and scale invariant alogrithm is proposed for the recognition and position-control of objects uusing invariant feature information. Experimental results indicate the effectiveness of the proposed alogrithm.

  • PDF

Panorama Image Construction Method By Automatic Shot (자동 촬영에 의한 파노라마 영상 생성 방법)

  • Kim, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1524-1529
    • /
    • 2007
  • In this paper, automatic shot panorama construction method is presented. For construction of panorama image, conventional panoramic techniques manually took two panorama members, but the proposed method automatically takes panorama members according to moving camera and constructs panorama image. The panorama members are automatically selected and taken by tracking region over image stream form camera. Matching region for panorama including the tracking region in the members is selected and applied by invariant feature panoramic method. Our method can automatically shot panorama members and has merit of high processing speed. In the experiments, it was shown that the algorithm required about 0.89 second in processing time, about two times shorter than existing invariant feature based one(6), for color images of $320{\times}240$ size.

  • PDF

Cover song search based on magnitude and phase of the 2D Fourier transform (이차원 퓨리에 변환의 크기와 위상을 이용한 커버곡 검색)

  • Seo, Jin Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.518-524
    • /
    • 2018
  • The cover song refers to live recordings or reproduced albums. This paper studies two-dimensional Fourier transform as a feature-dimension reduction method to search cover song fast. The two-dimensional Fourier transform is conducive in feature-dimension reduction for cover song search due to musical-key invariance. This paper extends the previous work, which only utilize the magnitude of the Fourier transform, by introducing an invariant from phase based on the assumption that adjacent frames have the same musical-key change. We compare the cover song retrieval accuracy of the Fourier-transform based methods over two datasets. The experimental results show that the addition of the invariant from phase improves the cover song retrieval accuracy over the previous magnitude-only method.