• Title/Summary/Keyword: Intratracheal administration

Search Result 24, Processing Time 0.022 seconds

Evaluation of Liver Toxicity of Neonates Following Intragastric Administration or Intratracheal Instillation of Polyethylene Microplatics to Pregnant Mice (폴리에틸렌 미세플라스틱의 임신 마우스 위내 투여 및 기도 점적에 따른 신생자 간독성 평가)

  • Kim, GeunWoo;Kim, ChangYul
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.106-115
    • /
    • 2022
  • Background: Current research suggests that humans are exposed to microplastics through consumption of foods and beverages, the airway route, and a variety of other means. Objectives: We evaluated oxidative stress and inflammation from polyethylene microplastics (PE-MPs) in the neonatal liver through intragastric administration or intratracheal instillation in pregnant mice. Methods: PE-MPs were administered from gestational day 9 to postnatal day 7. The intragastric administration group (0.01 mg/mouse/day or 0.1 mg/mouse/day) and intratracheal instillation group (6 ㎍/mouse/day or 60 ㎍/mouse/day) of PE-MPs were administered. After sacrifice, the oxidative stress and inflammation of the neonatal livers were measured. Results: As a result of the oxidative stress caused by PE-MPs in the neonatal livers, glutathione peroxidase decreased in a concentration-dependent manner in the intragastric administration group compared to the control group and intratracheal instillation decreased in high concentration PE-MPs. The catalase level increased at high concentrations of intragastric administration and intratracheal instillation. To confirm the level of inflammation caused by PE-MPs, monocyte chemoattractant protein-1 and tumor necrosis factoralpha were increased compared to the control group except for intratracheal intilation-high concentration PEMPs. The C-reactive protein level was decreased by intragastric administration compared to the control group and intratracheal instillation was increased compared to the control group. Conclusions: Despite the difficulty in comparing the toxic intensity between intragastric administration and intratracheal instillation of PE-MPs, our study revealed that oxidative stress and inflammation were induced in the neonatal liver. However, it is necessary to evaluate the toxic effects of microplastics on various organs as well. Overall, the present study indicates that the evaluation of toxic effects of long-term microplastic exposure, potential of microplastic toxicity on next-generation offspring and toxicity mechanism in human should be considered for further investigations.

Acute Toxicity Study of the Glyoxal by Intratracheal Instillation in Male Sprague-Dawley Rats (수컷 랫드(Sprague-Dawley)에서 글리옥살(glyoxal)의 단회 기도내 투여에 따른 급성 독성시험)

  • Kim, Hyeon-Young;Kim, Kicheon;Kim, In-Hyeon;Kim, Min-Seok;Kim, Sung-Hwan;Lee, Kyuhong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.508-516
    • /
    • 2019
  • Objectives: The present study was performed to obtain acute toxicity information on glyoxal in male rats after intratracheal instillation. Methods: In order to calculate the LD50 of glyoxal using Probit analysis with SAS, the test article was one intratracheal instillation to male Sprague-Dawley rats at dose levels of 0, 225, 451 or 902 mg/kg. During the test period, mortality, clinical signs, and body and organ weights were examined. At the end of the 14-day observation period, all animals were sacrificed and complete gross postmortem and histopathological examinations were performed. Results: Four animals of the 902 mg/kg group died within one week after the administration of glyoxal. All treatment group in a dose dependent manner, decreased body weight was found during the study period. The absolute and relative lung weight, and histopathological changes (bronchiolar-alveolar hyperplasia, chronic inflammation) of lung exhibited an increased in glyoxal treated groups in a dose dependent manner. However, there were no changes on the organ weights and histopathological changes of any other organ except lung. Conclusions: The results obtained in the present study suggest that the LD50 in male Sprague-Dawley rats after a single intratracheal instillation of glyoxal was considered to be 866.9 mg/kg and the lung was found to be the target organ for glyoxal.

Acute Toxicity Study of the 2-butoxyethanol by Intratracheal Instillation in Male Sprague-Dawley Rats (수컷 랫드(Sprague-Dawley)에서 2-부톡시에탄올(2-butoxyethanol)의 단회 기도내 투여에 따른 급성 독성시험)

  • Kim, Hyeon-Young;Kim, In-Hyeon;Kim, Min-Seok;Kim, Sung-Hwan;Lee, Kyuhong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.473-483
    • /
    • 2021
  • Objectives: The present study aimed to evaluate the potential toxicity of 2-butoxyethanol after intratracheal instillation in male rats. Methods: In order to calculate median lethal dose (LD50) of 2-butoxyethanol using Probit analysis with SAS program, the 2-butoxyethanol was administered with dose levels of 0, 101.64, 203.28 and 406.56 mg/kg by once intratracheal instillation to male rats. During the test period, clinical signs, mortality, body weights, organ weights, hematology, and serum biochemistry were examined. At the end of 14 days observation period, all animals were sacrificed and gross finding and histopathological examination were performed. Results: All animals of 406.56 mg/kg group died within 2 weeks after the administration of 2-butoxyethanol. Treatment-related clinical signs, gross observation and histopathological changes (mucous cell hyperplasia, alveolar macrophage aggregation, and hemorrhage) of lung exhibited an increased in 2-butoxyethanol treated groups in a dose dependent manner. However, there were no changes in the organ weights, hematology and serum biochemistry, and histopathology of any other organ except lung. Conclusions: On the basis of the results, it was concluded that a single intratracheal instillation of 2-butoxyethanol in male Sprague-Dawley rats resulted in some adverse effects on mortality, clinical sign, and histopathology in the lung. In the experimental conditions, the LD50 of 2-butoxyethanol was considered to be 287.2 mg/kg and lung was founded to be the target organ of 2-butoxyethanol.

Pulmonary Toxicity in Rats by Intratracheal Instillation with the Rare-Earth Metal Neodymium Oxide (산화네오디뮴(Nd2O3) 기도투여에 따른 흡입독성)

  • Kim, Jong-Kyu;Kang, Min-Gu;Kim, Soo-Jin;Song, Se-Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.321-329
    • /
    • 2014
  • Objectives: This study was performed to produce data on the pulmonary toxicity of neodymium oxide($Nd_2O_3$) by intratracheal instillation. Methods: Two groups of rats were exposed to neodymium oxide by intratracheal instillation with doses of 0.5 mg and 2.0 mg, respectively. At two days, four weeks and 12 weeks after exposure, body weight change, organ weight change and histopathological change were observed. At 12 weeks after exposure, lung function change was measured. Results: The body weight of rats in the high concentration group decreased after 12 weeks by 4-5% compared with the control group. At four weeks and 12 weeks after the administration of neodymium oxide, the absolute weight of the lungs of the high concentration group were significantly increased when compared with the control group(p<0.05). At 12 weeks after the injection of neodymium oxide, breath frequency and respiratory minute volume were increased, but inhalation time and expiratory time were decreased. Bronchiolar epithelial hyperplasia, alveolar type II cell hypertrophy/hyperplasia and foreign body granulomatous inflammation were observed in the high exposure group. Conclusions: Body weight decrease, lung absolute weight and breath frequency increase, and pathological lung change were all observed. We found that pulmonary toxicity of neodymium oxide nanoparticles by intratracheal instillation could be confirmed.

Physicochemical Property Changes on Respiratory System of Rats After Intratracheal Instillation Exposure to Korea Chrysotile and Anthophyllite (국내산 백석면과 안소필라이트의 물리화학적 특성과 호흡기계 내 변화 연구)

  • Chung, Yong Hyun;Han, Jeong Hee;Kang, Min Gu;Kim, Jong Kyu;Yang, Jeong Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.224-234
    • /
    • 2012
  • Objectives: To assess the hazard of Korea chrysotile and anthophylite, fibers were analyzed for their physicochemical properties by transmission electron microscope equipped with energy dispersive X-ray spectrometer (TEM-EDS). Methods: To evaluate the biopersistence of 2 domestic asbestos, Sprague-Dawely rats were exposed to 2 mg asbestos by intratracheal instillation. Each asbestos (chrysotile ; $8,814,244{\times}10^6$ fibers/mg, average size $0.08{\mu}m{\times}4.39{\mu}m$, anthophyllite ; $5,182{\times}10^6$ fibers/mg, average size $0.95{\mu}m{\times}7.29{\mu}m$) were evaluated after a single intratracheal instillation. At times from 1 week to 4 weeks after exposure, the numbers of asbestos fivers in the bronchoalveolar lavage fluid and in the lung were calculated. Results: Anthophyllite fivers continuously have retained for 4 weeks but chrysotile fivers were rarely found at 4 weeks after exposure in the bronchoalveolar lavage fluid. Chrysotile fivers at 4 weeks after treatment were not observed but anthophyllite was easily observed in the lung with phase contrast microscopy. According to electron microscopic observation of asbestos in the lung, within 1 week after the administration of chrysotile fivers were decreased rapidly but anthophyllite fivers were very little change for 4 weeks. When chrysotile fivers have been lost Fe in 1 week, there were no significant changes in anthophyllite fivers in the lung. Conclusions: These findings indicate that after a long time exposure to chrysotile, asbestos bodies can not be found in the bronchoalveolar lavage fluid.

Ginsenosides analysis in the crude saponin fraction extracted from Korean red ginseng, and its efficacious analysis against acute pulmonary inflammation in mice

  • Lee, Seung Min;Lim, Heung Bin
    • Analytical Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.146-153
    • /
    • 2017
  • In this study, we isolated ginseng crude saponin (GCS) from Korean red ginseng (KRG) and determined the ginsenoside content in it to investigate the physiological and pathological effects of GCS on acute pulmonary inflammation induced by intratracheal instillation of cigarette smoke condensates (CSC) and lipopolysaccharide (LPS) solution in BALB/c mice. GCS was orally administered at doses of 10 mg/kg and 25 mg/kg for 3 weeks. The recovery rate of GCS from KRG was 6.5 % and total ginsenosides from GCS was 1.13 %, and the content of Rb1 was the highest among them. Total inflammatory cells in the lung homogenates and bronchoalveolar lavage fluid (BALF) increased following intratracheal administration of CSC and LPS. However, GCS administration impaired this increase. Furthermore, it inhibited the increase in leukocytes in the blood, considerably decreased neutrophils in BALF, and declined infiltration of inflammatory cells and deposition of collagen in the tracheal and alveolar tissue. In this study, GCS was found to have a protective effect against acute pulmonary inflammation and it may be beneficial in preventing various respiratory diseases.

Effects of Wikyung-Tang on the Lipopolysaccharide-Induced Acute Lung Injury in Mice (위경탕(葦莖湯)이 LPS로 유발된 급성 폐손상에 대한 영향)

  • Kim, Ki-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.843-847
    • /
    • 2010
  • Wikyung-Tang(WKT) is herbal medication used in abcess-causing respiratory disease. Previous in vitro study demonstrates that WKY presents anti-proliferative effects in A549 cells. Here we show that WKY protects mice against lipopolysaccharide(LPS)-induced acute lung injury (ALI). We pretreated mice orally with WKY(2.34 and 5.85 g/kg body weight) 1, 24 and 48 hours before intratracheal administration of LPS. For same condition, control group was pretaken orally distilled water before LPS administration. 24 hours after LPS intratracheal instillation, bronchoalveolar lavege fluids(BALF) was obtained to measure protein and proinflammatory cytokines(TNF-${\alpha}$, IL-$1{\beta}$, IL-6). Protein and proinflammatory cytokines in BALF of WKT treated groups were totally decreased. Statistically, Protein, TNF-${\alpha}$ and IL-$1{\beta}$ of high concentrate WKT treated group decreased significantly compared with control group. In conclusion, WKY had some anti-inflammatory effect in a clinically relevant model of ALI. these results indicated that WKY was effective in inhibiting ALI and might act as a potential therapeutic reagent for treating ALI in the future.

Diesel Exhaust Particles and Airway Inflammation: Effect of Nitric Oxide Synthase Inhibitors

  • Lim, Heung-Bin;Lee, Dong-Wook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.121-128
    • /
    • 2002
  • This study was carried out to investigate if nitric oxide synthase (NOS) inhibitors modulate airway inflammation induced by diesel exhaust particles (DEP). N$\^$G/-nitro-L-arginine methyl ester (L-NAME), a potent constitutive NOS (cNOS) inhibitor, and aminoguanidine (AG), a selective inducible NOS (iNOS) inhibitor, were administered to mice in their drinking water for 7 weeks. Airway inflammation was elicited by the repeated intratracheal administration of DEP. The results showed that macrophages, inflammatory eosinophils and neutrophils in bronchoalveolar lavage (BAL) fluids by intratracheal DEP instillation were significantly suppressed in the mice treated with two NOS inhibitors toghther with DEP. The suppression of these cells was more effective in AG treated groups than in L -NAME treated groups. NOS inhibitor treatment also reduced interleukin -5 (IL-5 in the BAL fluids and lung homogenates. Additionally, it was found that eosinophil peroxidase (EPO) activity in the BAL fluids was also decreased by NOS inhibitor treatment. These results suggest that nitric oxide (NO) is produced in airway inflammation by repeated DEP instillation, and that iNOS inhibition as well as cNOS inhibition can play a modulating role in this airway inflammation by DEP.

The Effect of Surfactant Therapy for Acute Lung Injury Induced by Intratracheal Endotoxin Instillation in Rats (기관내 내독소 투여로 유발된 흰쥐의 급성폐손상에서 surfactant의 치료효과)

  • Kang, Yun-Jung;Park, Yong-Bum;Jee, Hyun-Suk;Choi, Jae-Chol;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.487-499
    • /
    • 2000
  • Background : Acute lung injury is an hypoxic respiratory failure resulting from damage to the alveolar-capillary membrane, which can be developed by a variety of systemic inflammatory diseases. In this study the therapeutic effects of intra-tracheal pulmonary surfactant instillation was evaluated in the intratracheal endotoxin induced acute lung injury model of a rat. Methods : Twenty Sprague-Dawley rats were divided into 4 groups, and normal saline (2 ml/kg, for group 1) or LPS (5 mg/kg, for group 2, 3, and 4) was instilled into the trachea respectively. Either normal saline (2 ml/kg, for group 1 & 2, 30 min later) or bovine surfactant (15 mg/kg, 30 min later for group 3, 5 hr later for group 5) was instilled into the trachea. The therapeutic effect of intratracheal surfactant therapy was evaluated with one chamber body plethysmography (respiratory frequency, tidal volume and enhanced pause), ABGA, BAL fluid analysis (cell count with differential, protein concentration) and pathologic examination of the lung. Results : Intratracheal endotoxin instillation increased the respiration rate decreased the tidal volume and int creased the Penh in all group of rats. Intratracheal instillation of surfactant decreased Penh, increased arterial oxygen tension, decreased protein concentration of BAL fluid and decreased lung inflammation at both times of administration (30 minute and 5 hour after endotoxin instillation). Conclusion : Intratracheal instillation of surfactant can be a beneficial therapeutic modality as discovered in the acute lung injury model of rats induced by intratracheal LPS intillation. It deserves to be evaluated for treatment of human acute lung injury.

  • PDF

The Mechanism of Iron Transport after Intratracheal Instillation of Iron in Rats (랏트의 기관내 Fe 노출후 Fe 이동에 대한 연구)

  • Kwon, Min;Choi, Byung-Sun;Park, Eon-Sub;Chung, Nam-Hyun;Park, Sung-Jo;Lim, Young;Park, Jung-Duck
    • Journal of Preventive Medicine and Public Health
    • /
    • v.37 no.4
    • /
    • pp.329-336
    • /
    • 2004
  • Objectives : Iron (Fe) is an essential element in biological processes; however excessive Fe is harmful to human health. Some air pollutants contain a high level of Fe, and the human lung could therefore be over-exposed to Fe through inhaled air pollutants. This study was performed to investigate the role of metal transporters (divalent metal transporter 1, DMT1, and metal transporter protein 1, MTP1) in the lung under the environments of Fe deficiency in the body and Fe over-exposure in the lung. Methods : Rats were fed Fe deficient (FeD, 2-6 mg Fe/kg) or Fe supplemented (FeS, 120 mg Fe/kg) diet for 4 weeks, followed by a single intratracheal instillation of ferrous sulfate at low (10 mg/kg) or high (20 mg/kg) dose. Fe concentration was analyzed in the serum, lung and liver, and histopathological findings were observed in the lung at 24 hours after Fe administration. The level of DMT1 and MTP1 expression in the lung was analyzed by RT-PCR. Also, the effect of Fe deficiency in the body was evaluated on the level of Fe concentration and metal transporters compared to FeS-diet fed rats at the end of 4-week FeD or FeS diet. Results : The 4-week FeD diet in rats induced an Fe deficiency anemia with decreased serum total Fe, increased unsaturated Fe binding capacity and hypochromic microcytic red blood cells. The concentration of Fe in the lung and liver was lower in the FeD-diet fed rats than in the FeS-diet fed rats. The level of metal transporters mRNA expression was higher in the FeD-diet fed rats than in the FeS-diet. The concentration of Fe in the lung was increased in a dose-dependent pattern after intratracheal instillation of Fe into the rats, while the level of Fe in the serum and liver was not increased in the low-dose Fe administered rats. Therefore, DMT1 and MTP1 mRNA was highly expressed in both FeD-diet and FeS-diet fed rats, after intratracheal instillation of Fe. Conclusions : DMT1 and MTP1 mRNA were more highly expressed in FeD-diet fed rats than in FeS-diet fed rats. The over-exposure of Fe intratracheally induced high expression of metal transporters and increased Fe deposition in the lung in both FeD-diet and FeS-diet fed rats, but did not increase the Fe level of the serum and liver in low-dose Fe administered rats. These results suggest that the role of metal transporters in the lung might be different in a part from the duodenum under the environment of over-exposure to Fe.