• 제목/요약/키워드: Intraseasonal Oscillation

검색결과 14건 처리시간 0.029초

여름철 계절내 진동에 의한 대기 와도의 연직 구조: 순압성 또는 경압성? (Vertical Vorticity Structure Associated with the Boreal Summer Intraseasonal Oscillation: Barotropic or Baroclinic?)

  • 송은지;서경환
    • 대기
    • /
    • 제22권2호
    • /
    • pp.259-265
    • /
    • 2012
  • This study investigates the reason why the barotropic vorticity structure prevails vertically in response to the enhanced convection associated with the boreal summer intraseasonal oscillation over the central Indian Ocean. The relative vorticity tendency analysis for a 2.5-layer simplified model demonstrates that the barotopic vorticity structure is predominant due to the following two factors: 1) vertical easterly shear on the meridional gradient of barotropic divergence (which induces generation of barotropic vorticity twice larger than that of baroclinic vorticity); and 2) vertical easterly shear on the meridional gradient of baroclinic divergence (which appears only in relation to the generation of barotropic vorticity). The percentage of contribution by each term to barotropic and baroclinic vorticity tendency equations is presented.

GMS 상층운량의 40~50일 계절만 진동 (The 40~50Day Intraseasonal Oscillation of the Geostationary Meteorological Satellite High Cloud Amount)

  • 하경자;서애숙
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.619-633
    • /
    • 1996
  • 인도양 및 서태평양 부근의 적도 대류의 계절안 변동을 GMS 상층운량을 사용하여 연구되었다. 이 연구는 90E-l7IW와 495-5ON 영역에서의 여름 몬순의 계절안 및 경년 변동 주기내의 열대-중위도 상호 관계를 찾는데 방향이 맞추어져 있다. 특히 상층운량에서 적도 대류와 연관된 동아시아 몬순의 계절안 상호작용을 이해하기 위해 대규모 대류의 이동과 진화에 대한 공간 및 시간 구조의 분석이 이루어졌다. 공간과 시간 발전을 동시에 보기 위해 연장 경험적 직교함수 분석이 적용되었다. 그 첫째는 정규 구조로 간주될 수 있는, 90E-l2OE의 강한 대류의 동쪽 확장이 뚜렷한 모드이나 우리나라와 일본 부근에서는 해마다 변동하는 모드이다. 둘째, 세째 및 네째 모드들은 여름 몬순 동안 계절안 변동성을 가지고 증폭되는 모드들이다. 적도 대류에서 가장 강력한 계절안 모드가 바로 40~50일 부근에 탁월 주기를 갖고 있는 공간 구조로 구성되는 것이 확인되었다.

  • PDF

동아시아 여름몬순 지수의 자기조직화지도(SOM)에 의한 강수량의 계절 내 진동 분류 (Classification of Intraseasonal Oscillation in Precipitation using Self-Organizing Map for the East Asian Summer Monsoon)

  • 추정은;하경자
    • 대기
    • /
    • 제21권3호
    • /
    • pp.221-228
    • /
    • 2011
  • The nonlinear characteristics of summer monsoon intraseasonal oscillation (ISO) in precipitation, which is manifested as fluctuations in convection and circulation, is one of the major difficulty on the prediction of East Asian summer monsoon (EASM). The present study aims to identify the spatial distribution and time evolution of nonlinear phases of monsoon ISO. In order to classify the different phases of monsoon ISO, Self-Organizing Map(SOM) known as a nonlinear pattern recognition technique is used. SOM has a great attractiveness detecting self-similarity among data elements by grouping and clustering such self-similar components. The four important patterns are demonstrated as Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. It is found that SOM well captured the formation of East Asian monsoon trough during early summer and its northward migration together with enhanced convection over subtropical western Pacific and regionally intensive precipitation including Meiyu, Changma and Baiu. The classification of fundamental large scale spatial pattern and evolutionary history of nonlinear phases of monsoon ISO provides the source of predictability for extended-range forecast of summer precipitation.

TRMM 자료로 분석한 매든-줄리안 진동의 대류성 및 층운형 강수 특징 (Rainfall Characteristics of the Madden-Julian Oscillation from TRMM Precipitation Radar: Convective and Stratiform Rain)

  • 손준혁;서경환
    • 대기
    • /
    • 제20권3호
    • /
    • pp.333-341
    • /
    • 2010
  • The stratiform rain fraction is investigated in the tropical boreal winter Madden-Julian oscillation (MJO) and summer intraseasonal oscillation (ISO) using Tropical Rainfall Measuring Mission (TRMM) Precipitation Rader data for the 11-yr period from 1998 to 2008. Composite analysis shows that the MJO/ISO produces larger stratiform rain rate than convective rain rate for nearly all phases following the propagating MJO/ISO deep clouds, with the greatest stratiform rainfall amount when the MJO/ISO center is located over the central-eastern Indian Ocean and the western Pacific. The fraction of the intraseasonally filtered stratiform rainfall compared to total rainfall (i.e., convective plus stratiform rainfall) amounts to 53~56%, which is 13~16% larger than the stratiform rain fraction estimated for the same data on seasonal-to-annual time scales by Schumacher and Houze. This indicates that the MJO/ISO exhibits the organized rainfall process which is characterized by the shallow convection/heating at the incipient phase and the subsequent flare-up of strong deep convection, followed by the development of stratiform clouds at the upper troposphere.

한반도 2016년 폭염에 여름철 계절안진동이 미친 영향 (Influence of Boreal Summer Intraseasonal Oscillation on the 2016 Heat Wave over Korea)

  • 이준이;김해정;정유림
    • 대기
    • /
    • 제29권5호
    • /
    • pp.627-637
    • /
    • 2019
  • Severe and long-lasting heat waves over Korea and many regions in the Northern Hemisphere (NH) during the 2016 summer, have been attributed to global warming and atmospheric teleconnection coupled with tropical convective activities. Yet, what controls subseasonsal time scale of heat wave has not been well addressed. Here we show a critical role of two dominant boreal summer intraseasonal oscillation (BSISO) modes, denominated as BSISO1 and BSISO2, on modulating temporal structure of heat waves in the midst of similar climate background. The 2016 summer was characterized by La Nina development following decay of strong 2015/2016 El Nino. The NH circumglobal teleconnection pattern (CGT) and associated high temperature anomalies and heat waves were largely driven by convective activity over northwest India and Pakistan during summer associated with La Nina development. However, the heat wave event in Korea from late July to late August was accompanied by the phase 7~8 of 30~60-day BSISO1 characterized by convective activity over the South China Sea and Western North Pacific and anticyclonic circulation (AC) anomaly over East Asia. Although the 2010 summer had very similar climate anomalies as the 2016 summer with La Nina development and CGT, short-lasting but frequent heat waves were occurred during August associated with the phase 1~2 of 10~30-day BSISO2 characterized by convective activity over the Philippine and South China Sea and AC anomaly over East Asia. This study has an implication on importance of BSISO for better understanding mechanism and temporal structure of heat waves in Korea.

여름철 계절안 진동이 한반도 강수에 미치는 영향 및 장기 변화 특성 연구 (Influence of Boreal Summer Intraseasonal Oscillation on Korean Precipitation and its Long-Term Changes)

  • 이준이;;문수연;하경자
    • 대기
    • /
    • 제27권4호
    • /
    • pp.435-444
    • /
    • 2017
  • By analyzing Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) from May to September for 1951~2007, this study investigates impacts of two dominant boreal summer intraseasonal oscillation (BSISO) modes on precipitation over Monsoon Asia including Korea and long-term change of 10~20-day and 30~60-day ISO over Korea. It is shown that BSISO strongly modulates rainfall variability over the many part of Monsoon Asia including Korea. Korea tends to have more (less) rainfall during the phases 3~5 (7~8) of BSISO1 representing the canonical northward/northeastward propagating 30~60-day ISO and during the phases 6~8 (3~5) of BSISO2 representing the northward/northwestward propagating 10~20-day ISO. It is found that the 10~20-day ISO variability contributes to summer mean rainfall variability more than 30~60-day ISO over Korea. For the 57 years of 1951~2007, the correlation coefficient between the May to September mean precipitation anomaly and standard deviation of 10~20-day (30~60-day) ISO is 0.71 (0.46). It is further noted that there is a significant increasing trend in the 10~20-day and 30~60-day ISO variability in the rainy season during the period of 1951 to 2007.

접합모형을 이용한 경년 및 계절안 진동 모사실험 연구 (On the Study of Intraseasonal and Interannual Oscillations Simulation by using Coupled Model)

  • 안중배
    • 한국환경과학회지
    • /
    • 제8권6호
    • /
    • pp.645-652
    • /
    • 1999
  • In order to simulate and investigate the major characteristics of El Nino/Southern Oscillation(ENSO) and Madden Jullian Oscillation(MJO), an intermediate type atmosphere-ocean coupled model is developed and their results are examined. The atmosphere model is a time-dependent non-linear perturbation moist model which can determine the internal heating for itself. The counterpart of the atmosphere model is GCM-type tropical ocean model which has fine horizontal and vertical grid resolutions. In the coupled experiment, warm SST anomaly and increased precipitation and eastward wind and current anomalies associated with ENSO and MJO are properly simulated in Pacific and Indian Oceans. In spite of some discrepancies in simulation MJO, the observed atmospheric and oceanic low-frequency characteristics in the tropics are successfully identified. Among them, positive SST anomalies centered at the 100m-depth of tropical eastern-central Pacific due to the eastward advection of warm water and reduced equatorial upwelling, and negative anomalies in the Indian and western Pacific seem to be the fundamental features of tropical low-frequency oscillations.

  • PDF

매든-줄리안 진동의 위상에 따른 동아시아 지역의 강수와 순환의 변동성 (East Asian Precipitation and Circulation Response to the Madden-Julian Oscillation)

  • 한상대;서경환
    • 한국지구과학회지
    • /
    • 제30권3호
    • /
    • pp.282-293
    • /
    • 2009
  • 본 연구는 겨울철과 여름철에 8개의 다른 MJO 전파 위상에 따라 동아시아 지역에서 강수와 기온, 순환 아노말리에 대하여 매든-줄리안 진동(MJO)/계절내 진동(ISO)의 영향에 대하여 고찰하였다. MJO의 중심이 동인도양에 위치한 3번 위상과 MJO의 중심이 서반구에 위치한 8번 위상에서 한반도의 겨울철 강수 패턴이 비선형적으로 나타난다. 이 두 위상에서 MJO의 강도가 2보다 작은 경우 양의 아노말리가 나타나는 반면에 2보다 큰 경우 음의 강수 아노말리가 나타났다. MJO 강도가 클 때 나타나는 이러한 음의 강수 아노말리는 한반도가 고기압성 아노말리 영역에 놓이고 북풍계열의 바람에 의한 한랭 건조한 바람의 이류에 의해 형성된다. 또한 본 연구에서는 여름철 ISO의 동진 및 북진 전파 위상에 따른 강수와 순환의 반응을 연구하였다.

한반도 여름 강우량의 변화에서 1996년을 중심으로 나타나는 남북진동 패턴 (The South-North Oscillation Centered on 1996 in Korean Summer Rainfall Variability)

  • 최기선;오수빈;김도우;변희룡
    • 대기
    • /
    • 제20권2호
    • /
    • pp.91-100
    • /
    • 2010
  • In accordance with the time series of rainfall in summer (June, July and August) in South and North Korea for recent 28 years (1981-2008), rainfall is substantially increased in South Korea since 1996, while it is significantly decreased in North Korea. In particular, the decreasing tendency of rainfall in summer in North Korea is more definitely observed during the $2^{nd}$ rainy season (late August - mid September) in intraseasonal variation. Such a feature is also confirmed in the spatial distribution of oscillation pattern between South and North Korea on the basis of 1996 which is obtained by empirical orthogonal function analysis using the summer rainfall observed in all weather observation stations in South and North Korea. For the decreasing tendency of rainfall in North Korea, it is found that northeasterlies from anticyclonic circulation centered on around Baikal Lake weaken convective activity during summer. On the contrary, the increasing tendency of rainfall in South Korea is related to the strengthened cyclonic circulation in the southern region of China and accordingly, enhances southwesterlies in South Korea.