DOI QR코드

DOI QR Code

Influence of Boreal Summer Intraseasonal Oscillation on the 2016 Heat Wave over Korea

한반도 2016년 폭염에 여름철 계절안진동이 미친 영향

  • 이준이 (부산대학교 기후과학연구소 및 기후시스템전공) ;
  • 김해정 (APEC 기후센터) ;
  • 정유림 (APEC 기후센터)
  • Received : 2019.10.11
  • Accepted : 2019.11.29
  • Published : 2019.12.31

Abstract

Severe and long-lasting heat waves over Korea and many regions in the Northern Hemisphere (NH) during the 2016 summer, have been attributed to global warming and atmospheric teleconnection coupled with tropical convective activities. Yet, what controls subseasonsal time scale of heat wave has not been well addressed. Here we show a critical role of two dominant boreal summer intraseasonal oscillation (BSISO) modes, denominated as BSISO1 and BSISO2, on modulating temporal structure of heat waves in the midst of similar climate background. The 2016 summer was characterized by La Nina development following decay of strong 2015/2016 El Nino. The NH circumglobal teleconnection pattern (CGT) and associated high temperature anomalies and heat waves were largely driven by convective activity over northwest India and Pakistan during summer associated with La Nina development. However, the heat wave event in Korea from late July to late August was accompanied by the phase 7~8 of 30~60-day BSISO1 characterized by convective activity over the South China Sea and Western North Pacific and anticyclonic circulation (AC) anomaly over East Asia. Although the 2010 summer had very similar climate anomalies as the 2016 summer with La Nina development and CGT, short-lasting but frequent heat waves were occurred during August associated with the phase 1~2 of 10~30-day BSISO2 characterized by convective activity over the Philippine and South China Sea and AC anomaly over East Asia. This study has an implication on importance of BSISO for better understanding mechanism and temporal structure of heat waves in Korea.

Keywords

References

  1. Blunden, J., and D. S. Arndt, 2017: State of the Climate in 2016. Bull. Amer. Meteor. Soc., 98, Si-S277, doi: 10.1175/2017BAMSStateoftheClimate.1.
  2. Cherchi, A., and A. Navarra, 2013: Influence of ENSO and of the Indian Ocean dipole on the Indian summer monsoon variability. Climate Dyn., 41, 81-103, doi:10.1007/s00382-012-1602-y.
  3. Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483-3505. https://doi.org/10.1175/JCLI3473.1
  4. Ding, Q., and B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 1878-1896, doi:10.1175/2011JCLI3621.1.
  5. Frolicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560, 360-364, doi:10.1038/s41586-018-0383-9.
  6. Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. H. Kripalani, and K.-S. Yun, 2018: Linkages between the South and East Asian summer monsoons: a review and revisit. Climate Dyn., 51, 4207-4227, doi:10.1007/s00382-017-3773-z.
  7. Hsu, P.-C., J.-Y. Lee, and K.-J. Ha, 2016: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 1403-1412, doi:10.1002/joc.4433.
  8. Hsu, P.-C., J.-Y. Lee, K.-J. Ha, and C.-H. Tsou, 2017: Influences of boreal summer intraseasonal oscillation on heat waves in Monsoon Asia. J. Climate, 30, 7191-7211, doi:10.1175/JCLI-D-16-0505.1.
  9. Hu, S., and A. V. Fedorov, 2017: The extreme El Nino of 2015-2016 and the end of global warming hiatus. Geophys. Res. Lett., 44, 3816-3824, doi:10.1002/2017GL072908.
  10. Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179-8205, doi:10.1175/JCLI-D-16-0836.1.
  11. Imada, Y., H. Shiogama, C. Takahashi, M. Watanabe, M. Mori, Y. Kamae, and M. Shuhei, 2018: Climate change increased the likelihood of the 2016 heat extremes in Asia. Bull. Amer. Meteor. Soc., 99, S97-101, doi:10.1175/BAMS-D-17-0109.1.
  12. IPCC, 2019a: Climate Change and Land. IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, 864 pp [Available online at https://ipcc.ch/report/srccl].
  13. IPCC, 2019b: Summary for Policymakers. IPCC Special report on the Ocean and Cryosphere in a Changing Climate, 3-35 [Available online at https://www.ipcc.ch/srocc/chapter/summary-for-policymakers].
  14. Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 1019-1037. https://doi.org/10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2
  15. KMA, 2010: 2010 extreme climate report, Korea Meteorological Administration, 114 pp (in Korean) [Available online at http://web.kma.go.kr/images/focus_pcrm/down/report_201012.pdf ].
  16. KMA, 2017: 2016 extreme climate report (in Korean), Korea Meteorological Administration, 190 pp. [Available online at http://www.climate.go.kr/home/cc_-data/2017/2016_abnormal_climate_report_high.pdf].
  17. Knutson, T. R., J. Kam, F. Zeng, and A. T. Wittenberg, 2018: CMIP5 model-based assessment of anthropogenic influence on record global warmth during 2016. Bull. Amer. Meteor. Soc., 99, S11-15, doi:10.1175/BAMS-D-17-0104.1.
  18. Lee, J.-Y., 2018: Interdecadal changes in the boreal summer tropical-extratropical teleconnections occurred around mid-to-late 1990s. Atmosphere, 28, 325-336, doi:10.14191/Atmos.2018.28.3.325 (in Korean with English abstract).
  19. Lee, J.-Y., and K.-J. Ha, 2015: Understanding of interdecadal changes in variability and predictability of the Northern Hemisphere summer tropical-extratropical teleconnection. J. Climate, 23, 8634-8647, doi: 10.1175/JCLI-D-15-0154.1.
  20. Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahn, A. Kumar, B. Stern, and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 1189-1203, doi:10.1007/s00382-010-0909-9.
  21. Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493-509, doi:10.1007/s00382-012-1544-4.
  22. Lee, J.-Y., P.-C. Hsu, S. Moon, and K.-J. ha, 2017a: Influence of boreal summer intraseasonal oscillation on Korean precipitation and its long-term changes. Atmosphere, 27, 435-444, doi:10.14191/Atmos.2017.27.4.435 (in Korean with English abstract).
  23. Lee, J.-Y., and Coauthors, 2017b: The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit. Asia-Pac. J. Atmos. Sci., 53, 257-272, doi:10.1007/s13143-017-0032-5.
  24. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
  25. Lim, Y.-H., K.-S. Lee, H.-J. Bae, D. Kim, H. Yoo, S. Park, and Y.-C. Hong, 2019: Estimation of heat-related deaths during heat wave episodes in South Korea(2006-2017). Int. J. Biometeorol., 63, 1621-1629, doi: 10.1007/s00484-019-01774-2.
  26. Masson-Delmotte, V., and Coauthors, 2018: Summary for Policymakers. In: Global warming of 1.5$^{\circ}C$ An IPCC Special Report. IPCC, 32 pp [Available online at https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf].
  27. Park, S.-W., S. Park, H.-I. Lee, and S.-W. Lee, 2016: Results of heat-related illnesses surveillance, 2016. Korea Centers for Disease Control and Prevention (in Korean with English abstract) [Available online at https://www.cdc.go.kr/board.es?mid=a20602010000&bid=0034&act=view&list_no=75530].
  28. Perkins-Kirkpatrick, S. E., and P. B. Gibson, 2017: Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep., 7, 12256, doi:10.1038/s41598-017-12520-2.
  29. Vogel, M. M., J. Zscheischler, R. Wartenburger, D. Dee, and S. I. Seneviratne, 2019: Concurrent 2018 hot extremes across Northern Hemisphere due to humaninduced climate change. Earth's Future, 7, 692-703, doi:10.1029/2019EF001189.
  30. Wheeler, M. C., H.-J. Kim, J.-Y. Lee, and J. C. Gottschalck, 2017: Chapter10: Real-time forecasting of modes of tropical intraseasonal variability: The Madden-Julian and boreal summer intraseasonal oscillation. In C.-P. Chang et al. Eds., The Global Monsoon System, 3rd ed, World Scientific, 131-138.
  31. WMO, 2017: WMO Guidelines on the calculation of climate normal. WMO-No. 1203, 18 pp [Available online at https://library.wmo.int/index.php?lvl=notice_display&id=20130#.XZrg2uczbUJ].
  32. Yeh, S.-W., Y.-J. Won, J.-S. Hong, K.-J. Lee, M. Kwon, K.-H. Seo, and Y.-G. Ham, 2018: The record-breaking heat wave in 2016 over South Korea and its physical mechanism. Mon. Wea. Rev., 146, 1463-1474, doi:10.1175/MWR-D-17-0205.1.
  33. Yeo, S.-R., S.-W. Yeh, and W.-S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophy. Res. Atmos., 124, 7498-7511. https://doi.org/10.1029/2018JD030170