• Title/Summary/Keyword: Intraoral optical scanning (IOS)

Search Result 2, Processing Time 0.016 seconds

A novel reference model for dental scanning system evaluation: analysis of five intraoral scanners

  • Karakas-Stupar, Irina;Zitzmann, Nicola Ursula;Joda, Tim
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.63-69
    • /
    • 2022
  • PURPOSE. The aim of this in vitro study was to investigate the accuracy (trueness and precision) of five intraoral scanners (IOS) using a novel reference model for standardized performance evaluation. MATERIALS AND METHODS. Five IOSs (Medit i500, Omnicam, Primescan, Trios 3, Trios 4) were used to digitize the reference model, which represented a simplified full-arch situation with four abutment teeth. Each IOS was used five times by an experienced operator, resulting in 25 STL (Standard Tessellation Language) files. STL data were imported into 3D software (Final Surface®) and examined for inter- and intra-group analyses. Deviations in the parameter matching error were calculated. ANOVA F-test and Kruskal-Wallis test were applied for inter-group comparisons (α = .05); and the coefficient of variation (CV) was calculated for intra-group comparisons (in % ± SD). RESULTS. Primescan (matching error value: 0.015), Trios 3 (0.016), and Trios 4 (0.018) revealed comparable results with significantly higher accuracy compared to Medit i500 (0.035) and Omnicam (0.028) (P < .001). For intra-group comparison, Trios 4 demonstrated the most homogenous results (CV 15.8%). CONCLUSION. The novel reference model investigated in this study can be used to assess the performance of dental scanning technologies in the daily routine setting and in research settings.

Use of measuring gauges for in vivo accuracy analysis of intraoral scanners: a pilot study

  • Iturrate, Mikel;Amezua, Xabier;Garikano, Xabier;Solaberrieta, Eneko
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2021
  • PURPOSE. The purpose of this study is to present a methodology to evaluate the accuracy of intraoral scanners (IOS) used in vivo. MATERIALS AND METHODS. A specific feature-based gauge was designed, manufactured, and measured in a coordinate measuring machine (CMM), obtaining reference distances and angles. Then, 10 scans were taken by an IOS with the gauge in the patient's mouth and from the obtained stereolithography (STL) files, a total of 40 distances and 150 angles were measured and compared with the gauge's reference values. In order to provide a comparison, there were defined distance and angle groups in accordance with the increasing scanning area: from a short span area to a complete-arch scanning extension. Data was analyzed using software for statistical analysis. RESULTS. Deviations in measured distances showed that accuracy worsened as the scanning area increased: trueness varied from 0.018 ± 0.021 mm in a distance equivalent to the space spanning a four-unit bridge to 0.106 ± 0.08 mm in a space equivalent to a complete arch. Precision ranged from 0.015 ± 0.03 mm to 0.077 ± 0.073 mm in the same two areas. When analyzing angles, deviations did not show such a worsening pattern. In addition, deviations in angle measurement values were low and there were no calculated significant differences among angle groups. CONCLUSION. Currently, there is no standardized procedure to assess the accuracy of IOS in vivo, and the results show that the proposed methodology can contribute to this purpose. The deviations measured in the study show a worsening accuracy when increasing the length of the scanning area.