• Title/Summary/Keyword: Intramolecular H-bonding interaction

Search Result 13, Processing Time 0.023 seconds

The α-Effect in Nucleophilic Substitution Reactions of Y-Substituted-Phenyl Diphenylphosphinates with HOO- and OH-

  • Hong, Hyo-Jeong;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2251-2255
    • /
    • 2013
  • Second-order rate constants ($k_{HOO^-}$) for the nucleophilic substitution reactions of Y-substituted-phenyl diphenylphosphinates (4a-4i) with $HOO^-$ in $H_2O$ have been measured spectrophotometrically. The ${\alpha}$-nucleophile $HOO^-$ is 10-70 times more reactive than the reference nucleophile $OH^-$ although the former is ca. $4pK_a$ units less basic than the latter, indicating the ${\alpha}$-effect is operative. The Bronsted-type plot for the reactions of 4a-4i with $HOO^-$ is linear with ${\beta}_{lg}=-0.51$, a typical ${\beta}_{lg}$ value for reactions which were reported to proceed through a concerted mechanism. The Yukawa-Tsuno plot is also linear with ${\rho}=1.40$ and r = 0.47, indicating that a negative charge develops partially on the O atom of the leaving group, which can be delocalized to the substituent Y through resonance interactions. Thus, the reactions have been proposed to proceed through a concerted mechanism. The magnitude of the ${\alpha}$-effect (i.e., the $k_{HOO^-}/k_{HO^-}$ ratio) decreases linearly as the leaving-group basicity increases. It has been concluded that solvation effect is not solely responsible for the ${\alpha}$-effect found in this study but the transition-state stabilization through an intramolecular H-bonding interaction is also responsible for the ${\alpha}$-effect.

The α-Effect in SNAr Reaction of Y-Substituted-Phenoxy-2,4-Dinitrobenzenes with Amines: Reaction Mechanism and Origin of the α-Effect

  • Cho, Hyo-Jin;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2448-2452
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for $S_NAr$ reactions of Y-substituted-phenoxy-2,4-dinitrobenzenes (1a-1g) with hydrazine and glycylglycine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Hydrazine is 14.6-23.4 times more reactive than glycylglycine. The magnitude of the ${\alpha}$-effect increases linearly as the substituent Y becomes a stronger electron-withdrawing group (EWG). The Br${\o}$nsted-type plots for the reactions with hydrazine and glycylglycine are linear with ${\beta}_{lg}=-0.21$ and -0.14, respectively, which is typical for reactions reported previously to proceed through a stepwise mechanism with expulsion of the leaving group occurring after rate-determining step (RDS). The Hammett plots correlated with ${\sigma}^{\circ}$ constants result in much better linear correlations than ${\sigma}^-$ constants, indicating that expulsion of the leaving group is not advanced in the transition state (TS). The reaction of 1a-1g with hydrazine has been proposed to proceed through a five-membered cyclic intermediate ($T_{III}$), which is structurally not possible for the reaction with glycylglycine. Stabilization of the intermediate $T_{III}$ through intramolecular H-bonding interaction has been suggested as an origin of the ${\alpha}$-effect exhibited by hydrazine.

Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1115-1119
    • /
    • 2013
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 2-pyridyl thionocarbonate (5b) and t-butyl 2-pyridyl thionocarbonate (6b) with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. General-base catalysis, which has often been reported to occur for aminolysis of esters possessing a C=S electrophilic center, is absent for the reactions of 5b and 6b. The Br${\o}$nsted-type plots for the reactions of 5b and 6b are linear with ${\beta}_{nuc}$ = 0.29 and 0.43, respectively, indicating that the reactions of 5b proceed through a stepwise mechanism with formation of a zwitterionic tetrahedral intermediate ($T^{\pm}$) being the rate-determining step while those of 6b proceed through a concerted mechanism. The reactivity of 5b and 6b is similar to that of their oxygen analogues (i.e., benzyl 2-pyridyl carbonate 5a and t-butyl 2-pyridyl carbonate 6a, respectively), indicating that the effect of modification of the electrophilic center from C=O to C=S (i.e., from 5a to 5b and from 6a to 6b) on reactivity is insignificant. In contrast, 6b is much less reactive than 5b, indicating that the replacement of the $PhCH_2$ in 5b by the t-Bu in 6b results in a significant decrease in reactivity as well as a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway). It has been concluded that the contrasting reactivity and reaction mechanism for the reactions of 5b and 6b are not due to the electronic effects of $PhCH_2$ and t-Bu but are caused by the large steric hindrance exerted by the bulky t-Bu in 6b.