• 제목/요약/키워드: Intramolecular H-bonding interaction

검색결과 13건 처리시간 0.024초

Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2719-2723
    • /
    • 2012
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in MeCN. The plot of pseudo-first-order rate constant ($k_{obsd}$) vs. [amine] curves upward, which is typical for reactions reported previously to proceed through a stepwise mechanism with two intermediates (i.e., a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$). Dissection of $k_{obsd}$ into the second- and third-order rate constants (i.e., $Kk_2$ and $Kk_3$, respectively) reveals that $Kk_3$ is significantly larger than $Kk_2$, indicating that the reactions proceed mainly through the deprotonation pathway (i.e., the $k_3$ process) in a high [amine] region. This contrasts to the recent report that the corresponding aminolysis of benzyl 2-pyridyl carbonate 5 proceeds through a forced concerted mechanism. An intramolecular H-bonding interaction was suggested to force the reactions of 5 to proceed through a concerted mechanism, since it could accelerate the rate of leaving-group expulsion (i.e., an increase in $k_2$). However, such H-bonding interaction, which could increase $k_2$, is structurally impossible for the reactions of 6. Thus, presence or absence of an intramolecular H-bonding interaction has been suggested to be responsible for the contrasting reaction mechanisms (i.e., a forced concerted mechanism for the reaction of 5 vs. a stepwise mechanism with $T^{\pm}$ and $T^-$ as intermediates for that of 6).

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism

  • Kang, Ji-Sun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1551-1555
    • /
    • 2012
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{7}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{8}$ with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. Substrate $\mathbf{8}$ is less reactive than $\mathbf{7}$. Steric hindrance exerted by the bulky $t$-Bu group of $\mathbf{8}$ has been suggested to be responsible for the decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{7}$ and $\mathbf{8}$ are linear with ${\beta}_{nuc}=0.49$ and 0.44, respectively, which is typical for reactions reported previously to proceed through a concerted mechanism. Aminolyses of $\mathbf{7}$ and $\mathbf{8}$ were expected to proceed through a zwitterionic tetrahedral intermediate $T^{\pm}$, which would be stabilized through an intramolecular H-bonding interaction. However, the kinetic results suggest that the reactions proceed through a concerted mechanism. The H-bonding interaction in $T^{\pm}$ has been suggested to accelerate the rate of leaving-group expulsion from $T^{\pm}$. Another factor that might accelerate expulsion of the leaving group is the "push" provided by the RO group in $T^{\pm}$ through resonance interactions. Thus, it has been concluded that the enhanced nucleofugality through the H-bonding interaction and the "push" provided by the RO group forces the reactions to proceed through a concerted mechanism.

Spectroscopic Properties of Flavonoids in Various Aqueous-Organic Solvent Mixtures

  • Park, Hyoung-Ryun;Daun, Yu;Park, Jong Keun;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.211-220
    • /
    • 2013
  • The characteristic fluorescence properties of quercetin (QCT) and apigenin (API) were studied in various $CH_3OH-H_2O$ and $CH_3CN-H_2O$ mixed solvents. The structure of QCT is completely planar. API is not planar at the ground state but becomes nearly planar at the excited state. If the molecules are excited to the $S_1$ state in organic solvents, QCT exhibits no fluorescence due to excited state intramolecular proton transfer (ESIPT) between the -OH and the carbonyl oxygen, but API shows significant fluorescence because ESIPT occurs slowly. If the molecules are excited to the $S_2$ state, both QCT and API exhibit strong $S_2{\rightarrow}S_o$ emission without any dual fluorescence. As the $H_2O$ composition of both solvents increases, the fluorescence intensity decreases rapidly due to the intermolecular hydrogen bonding interaction. The theoretical calculation further supports these results. The change in fluorescence properties as a function of the solvatochromic parameters was also studied.

Kinetic Study on Aminolysis of Y-Substituted-Phenyl Picolinates: Effect of H-Bonding Interaction on Reactivity and Transition-State Structure

  • Kim, Min-Young;Kang, Tae-Ah;Yoon, Jung Hwan;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2410-2414
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of Y-substituted-phenyl picolinates (7a-7h) with a series of cyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Comparison of the kinetic results with those reported previously for the corresponding reactions of Y-substituted-phenyl benzoates (1a-1f) reveals that 7a-7h are significantly more reactive than 1a-1f. The Br${\o}$nsted-type plot for the aminolysis of 4-nitrophenyl picolinate (7a) is linear with ${\beta}_{nuc}=0.78$, which is typical for reactions proceeding through a stepwise mechanism with expulsion of the leaving group being the rate-determining step. The Br${\o}$nsted-type plots for the piperidinolysis of 7a-7h and 1a-1f are also linear with ${\beta}_{lg}=-1.04$ and -1.39, respectively, indicating that the more reactive 7a-7h are less selective than the less reactive 1a-1f to the leaving-group basicity. One might suggest that the enhanced reactivity of 7a-7h is due to the inductive effect exerted by the electronegative N atom in the picolinyl moiety, while the decreased selectivity of the more reactive substrates is in accord with the reactivity-selectivity principle. However, the nature of intermediate (e.g., a stabilized cyclic intermediate through the intramolecular H-bonding interaction for the reactions of 7a-7h, which is structurally not possible for the reactions of 1a-1f) is also responsible for the enhanced reactivity with a decreased selectivity.

Saccharide Effect on the Lower Critical Solution Temperature of Poly(organophosphazenes) with Methoxy-poly(ethylene glycol) and Amino Acid Esters as Side Groups

  • Lee, Sang-Beom;Sohn, Youn-Soo;Song, Soo-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.901-905
    • /
    • 2003
  • The lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxypoly(ethylene glycol) (MPEG) and amino acid esters as side groups was studied as a function of saccharide concentration in aqueous solutions of mono-, di-, and polysaccharides. Most of the saccharides decreased the LCST of the polymers, and the LCST decrease was more prominently observed by saccharides containing a galactose ring, such as D-galactose, D-galactosamine and D-lactose, and also the polysacccharide, 1-6-linked D-dextran effectively decreased the LCST of the polymers. Such an effect was discussed in terms of intramolecular hydrogen bonding of saccharides in polymer aqueous solution. The saccharide effect was found to be almost independent on the kinds of the amino acid esters and MPEG length of the polymers. Such a result implies that the polymer-saccharide interaction in aqueous solution is clearly influenced by the structure of sacchardes rather than by that of the polymers. The acid saccharides such as D-glucuronic and D-lactobionic acid increased the LCST, which seems to be due to their pH effect.

Kinetic Study on Aminolysis of Phenyl 2-Pyridyl Carbonate in Acetonitrile: Effect of Intramolecular H-bonding Interaction on Reactivity and Reaction Mechanism

  • Song, Ji-Hyun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2081-2085
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of phenyl 2- pyridyl carbonate (6) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 6 is linear with ${\beta}_{nuc}$ = 0.54, which is typical for reactions reported previously to proceed through a concerted mechanism. Substrate 6 is over $10^3$ times more reactive than 2-pyridyl benzoate (5), although the reactions of 6 and 5 proceed through the same mechanism. A combination of steric hindrance, inductive effect and resonance contribution is responsible for the kinetic results. The reactions of 6 and 5 proceed through a cyclic transition state (TS) in which H-bonding interactions increase the nucleofugality of the leaving group (i.e., 2-pyridiniumoxide). The enhanced nucleofugality forces the reactions of 6 and 5 to proceed through a concerted mechanism. In contrast, the corresponding reaction of 4-nitrophenyl 2-pyridyl carbonate (7) proceeds through a stepwise mechanism with quantitative liberation of 4-nitrophenoxide ion as the leaving group, indicating that replacement of the 4-nitrophenoxy group in 7 by the PhO group in 6 changes the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as the leaving group (i.e., from 4-nitrophenoxide to 2-pyridiniumoxide). The strong electron-withdrawing ability of the 4-nitrophenoxy group in 7 inhibits formation of a H-bonded cyclic TS. The presence or absence of a H-bonded cyclic TS governs the reaction mechanism (i.e., a concerted or stepwise mechanism) as well as the leaving group (i.e., 2-pyridiniumoxide or 4-nitrophenoxide).

The α-Effect and Mechanism of Reactions of Y-Substituted Phenyl Benzenesulfonates with Hydrogen Peroxide Ion

  • Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2393-2397
    • /
    • 2009
  • Second-order rate constants ($k_{HOO}$‒) have been measured spectrophotometrically for nucleophilic substitution reactions of Y-substituted phenyl benzenesulfonates (1a-g) with $HOO^-$ ion in $H_2O$ at $25.0\;{\pm}\;0.1\;{^{\circ}C}$. The Br$\phi$nsted-type plot is linear with ${\beta}_{lg}$ = ‒0.73. The Hammett plot correlated with with ${\sigma}^-$ constants results in much better linearity than ${\sigma}^o$ constants, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS) either in a stepwise mechanism or in a concerted pathway. However, a stepwise mechanism in which departure of the leaving group occurs in the RDS has been excluded since $HOO^-$ ion is more basic and a poorer leaving group than the leaving Y-substituted phenoxide ions. Thus, the reactions of 1a-g with $HOO^-$ ion have been concluded to proceed through a concerted mechanism. The $\alpha$-nucleophile $HOO^-$ ion is more reactive than its reference nucleophile $OH^-$ ion although the former is ca. 4 p$K_a$ units less basic than the latter (i.e., the $\alpha$-effect). TS stabilization through intramolecular H-bonding interaction has been suggested to be irresponsible for the $\alpha$-effect shown by $HOO^-$ ion, since the magnitude of the $\alpha$-effect is independent of the electronic nature of substituent Y in the leaving group. GS destabilization through desolvation of $HOO^-$ ion has been concluded to be responsible for the $\alpha$-effect found in the this study.

The α-Effect in SNAr Reaction of 1-Fluoro-2,4-dinitrobenzene with Hydrazine: Ground-State Destabilization versus Transition-State Stabilization

  • Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2371-2374
    • /
    • 2014
  • A kinetic study is reported on SNAr reaction of 1-fluoro-2,4-dinitrobenzene with a series of primary amines including hydrazine in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{obsd}$ vs. [amine] are linear and pass through the origin, indicating that general-base catalysis by a second amine molecule is absent. The Br${\o}$nsted-type plot exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.46 when hydrazine is excluded from the correlation. The reaction has been suggested to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs after the rate-determining step (RDS). Hydrazine is ca. 10 times more reactive than similarly basic glycylglycine (i.e., the ${\alpha}$-effect). A five-membered cyclic intermediate has been suggested for the reaction with hydrazine, in which intramolecular H-bonding interactions would facilitate expulsion of the leaving group. However, the enhanced leaving-group ability is not responsible for the ${\alpha}$-effect shown by hydrazine because expulsion of the leaving group occurs after RDS. Destabilization of the ground-state of hydrazine through the electronic repulsion between the nonbonding electron pairs is responsible for the ${\alpha}$-effect found in the current $S_NAr$ reaction.

Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1547-1550
    • /
    • 2012
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of benzyl 2-pyridyl carbonate $\mathbf{3}$ and $t$-butyl 2-pyridyl carbonate $\mathbf{3}$ with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. Substrate $\mathbf{4}$ is much less reactive than $\mathbf{3}$ and the steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been attributed to its decreased reactivity. The Br${\o}$nsted-type plots for the reactions of $\mathbf{3}$ and $\mathbf{4}$ are linear with ${\beta}_{nuc}=0.57$ and 0.45, respectively. Thus, the reactions have been concluded to proceed through a concerted mechanism, although the current reactions were expected to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$. It has been proposed that the rate of leaving-group expulsion is accelerated by the intramolecular H-bonding interaction in $T^{\pm}$ and the "push" provided by the RO group through the resonance interaction. Thus, the enhanced nucleofugality forces the reactions to proceed through a concerted mechanism. The reactivity-selectivity principle (RSP) is not applicable to the current reaction systems, since the reaction of the less reactive $\mathbf{4}$ results in a smaller ${\beta}_{nuc}$ than that of the more reactive $\mathbf{3}$. Steric hindrance exerted by the bulky $t$-Bu group in $\mathbf{4}$ has been suggested to be responsible for the failure of the RSP.

A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism

  • Kang, Ji-Sun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2971-2975
    • /
    • 2012
  • Second-order rate constants $k_N$ have been measured spectrophotometrically for nucleophilic substitution reactions of t-butyl 4-pyridyl carbonate 8 with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 8 is linear with ${\beta}_{nuc}$ = 0.84. The ${\beta}_{nuc}$ value obtained for the reactions of 8 is much larger than that reported for the corresponding reactions of t-butyl 2-pyridyl carbonate 6 (i.e., ${\beta}_{nuc}$ = 0.44), which was proposed to proceed through a forced concerted mechanism. Thus, the aminolysis of 8 has been concluded to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$, in which expulsion of the leaving-group from $T^{\pm}$ occurs at the rate-determining step (RDS). In contrast, aminolysis of benzyl 4-pyridyl carbonate 7 has been reported to proceed through two intermediates, $T^{\pm}$ and its deprotonated form $T^-$ on the basis of the fact that the plots of pseudo-first-order rate constant $k_{obsd}$ vs. amine concentration curve upward. The current study has demonstrated convincingly that the nature of the leaving and nonleaving groups governs the reaction mechanism. The contrasting reaction mechanisms have been rationalized in terms of an intramolecular H-bonding interaction, steric acceleration, and steric inhibition.