• Title/Summary/Keyword: Intrados

Search Result 32, Processing Time 0.022 seconds

Limit Load and Approximate J-Integral Estimates for Axial-Through Wall Cracked Pipe Bend (축방향 관통균열이 존재하는 곡관의 한계 하중 및 공학적 J-적분 예측)

  • Song, Tae-Kwang;Kim, Jong-Sung;Jin, Tae-Eun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.562-569
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J estimates for axial through-wall cracked pipe bends under internal pressure and in-plane bending. Geometric variables associated with a crack and pipe bend are systematically varied, and three possible crack locations (intrados, extrados and crown) in pipe bends are considered. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, effect of bend and crack geometries on plastic limit loads for axial through-wall cracked pipe bends under internal pressure and in-plane bending are quantified, and closed-form limit solutions are given. Based on proposed limit load solutions, a J estimation scheme for axial through-wall cracked pipe bends under internal pressure and in-plane bending is proposed based on reference stress approach.

FUZZY SUPPORT VECTOR REGRESSION MODEL FOR THE CALCULATION OF THE COLLAPSE MOMENT FOR WALL-THINNED PIPES

  • Yang, Heon-Young;Na, Man-Gyun;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.607-614
    • /
    • 2008
  • Since pipes with wall-thinning defects can collapse at fluid pressure that are lower than expected, the collapse moment of wall-thinned pipes should be determined accurately for the safety of nuclear power plants. Wall-thinning defects, which are mostly found in pipe bends and elbows, are mainly caused by flow-accelerated corrosion. This lowers the failure pressure, load-carrying capacity, deformation ability, and fatigue resistance of pipe bends and elbows. This paper offers a support vector regression (SVR) model further enhanced with a fuzzy algorithm for calculation of the collapse moment and for evaluating the integrity of wall-thinned piping systems. The fuzzy support vector regression (FSVR) model is applied to numerical data obtained from finite element analyses of piping systems with wall-thinning defects. In this paper, three FSVR models are developed, respectively, for three data sets divided into extrados, intrados, and crown defects corresponding to three different defect locations. It is known that FSVR models are sufficiently accurate for an integrity evaluation of piping systems from laser or ultrasonic measurements of wall-thinning defects.

Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks

  • Yun, So Hun;Koo, Young Do;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2678-2685
    • /
    • 2020
  • The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.

Characteristics of Eddy Current Signals of Axial Notches in Steam Generator U-bend Tubes using Rotating Pancake Coils (회전코일 와전류신호를 이용한 증기발생기 곡관형 튜브의 축방향노치 신호의 특성)

  • Kim, Chang-Soo;Moon, Yong-Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • Steam generator tubes are critical boundary of the primary and secondary side in nuclear power plants. Eddy current testing is commonly used as the method of non-destructive testing for the safety and integrity of steam generator tubes in the nuclear power plants. Changes in the geometric shape act as a stress concentration factor likely to cause a defect during the steam generator operation. The mixed-signals with the geometric shape are distorted and attributes that are difficult to detect signals. An example is bending stress due to compression process at a U-bend occurring in the intrados region which has a small radius of curvature. The resulting change in the geometric shape may lead to a dent like occurrences. The dent can cause stress concentration and generates stress corrosion cracks. In this study, the steam generator tubes of nuclear power plant were selected to study for analysis of mixed-signal containing dent and stress corrosion cracks.

Estimation of Collapse Moment for Wall Thinned Elbows Using Fuzzy Neural Networks

  • Na, Man-Gyun;Kim, Jin-Weon;Shin, Sun-Ho;Kim, Koung-Suk;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.362-370
    • /
    • 2004
  • In this work, the collapse moment due to wall-thinning defects is estimated by using fuzzy neural networks. The developed fuzzy neural networks have been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy neural network to reduce the sensitivity to the input change and the fuzzy neural networks are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, two fuzzy neural networks are trained for two data sets divided into the two classes of extrados and intrados defects, which is because they have different characteristics. The relative 2-sigma errors of the estimated collapse moment are 3.07% for the training data and 4.12% for the test data. It is known from this result that the fuzzy neural networks are sufficiently accurate to be used in the wall-thinning monitoring of elbows.

CFD APPLICATION TO THE REGULATORY ASSESSMENT OF FAC-CAUSED CANDU FEEDER PIPE WALL THINNING ISSUE

  • Kang, Dong-Gu;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.37-48
    • /
    • 2008
  • Flow fields inside feeder pipes have been simulated numerically using a CFD (computational fluid dynamics) code to calculate the shear stress distribution, which is the most important factor in predicting the local regions of feeder pipes highly susceptible to FAC (flow-accelerated corrosion)-induced wall thinning. The CFD approach, with schemes used in this study, to simulate the flow situations inside the CANDU feeder pipes has been verified as it showed a good agreement between the investigation results for the failed feedwater pipe at Surry unit 2 plant in the U.S. and the CFD calculation. Sensitivity studies of the three geometrical parameters, such as angle of the first and second bends, length of the first span between the grayloc hub and the first bend, and length of the second span between the first and the second bends have been performed. CFD analysis reveals that the local regions of feeder pipes of Wolsung unit 1 in Korea, on which wall thickness measurements have been performed so far, are not coincident with the worst regions predicted by the present CFD analysis located in the connection region of straight and bend pipe near the inlet part of the bend intrados. Finally, based on the results of the present CFD analysis, a guide to the selection of the weakest local positions where the measurement of wall thickness should be performed with higher priority has been provided.

Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

  • Kim, Nam In;Kim, Young Sik;Kim, Kyung Soo;Chang, Hyun Young;Park, Heung Bae;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.120-126
    • /
    • 2015
  • The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001~0.075% were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel.

Residual Stress in U-Bending Deformations and Expansion Joints of Heat Exchanger Tubes (전열관의 굽힘 및 확관접합 잔류응력)

  • Jang, Jin-Seong;Bae, Gang-Guk;Kim, U-Gon;Kim, Seon-Jae;Guk, Il-Hyeon;Kim, Seong-Cheong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.279-289
    • /
    • 2000
  • Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's row-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319 MPa in axial direction at the position of $\psi$ = $0^{\circ}$. Tensile residual stresses(+) of $\sigma_{zz}$ = 45 MPa and $\sigma_{\theta\theta}$ = 25 MPa were introduced in the intrados surface at the position of $\psi$ = $0^{\circ}$. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of $\psi$ = $90^{\circ}$, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction.

Investigation of Maximum External Pressure of Helically Coiled Steam Generator Tubes with Axial and Circumferential Through-Wall Cracks (축방향 및 원주방향 관통균열이 존재하는 나선형 전열관의 파손 외압 평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Choi, Shin-Beom;Yu, Je-Yong;Kim, Ji-Ho;Choi, Suhn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.573-579
    • /
    • 2013
  • Once-through helically coiled steam generator tubes subjected to external pressure are of interest because of their application to advanced small- and medium-sized integral reactors, in which a primary coolant with a relatively higher pressure flows outside the tubes, while secondary water with a relatively lower pressure flows inside the tubes. Another notable point is that the values of the mean radius to thickness ratio of these steam generator tubes are very small, which means that a thick-walled cylinder is employed for these steam generator tubes. In the present paper, the maximum allowable pressure of helically coiled and thick-walled steam generator tubes with through-wall cracks under external pressure is investigated based on a detailed nonlinear three-dimensional finite element analysis. In terms of the crack orientation, either circumferential or axial through-wall cracks are considered. In particular, in order to quantify the effect of the crack location on the maximum external pressure, these cracks are assumed to be located in the intrados, extrados, and flank of helically coiled cylinders. Moreover, an evaluation is also made of how the maximum external pressure is affected by the ovality, which might be inherently induced during the tube coiling process used to fabricate the helically coiled steam generator tubes.

Estimation of Tensile Properties of Pipe Bends Manufactured by Cold-Bending (냉간 굽힘 가공된 곡관의 인장물성치 예측)

  • Kim, Jin-Weon;Lee, Mi-Yeon;Lee, Sa-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1059-1064
    • /
    • 2012
  • In this study, tensile tests were performed on specimens that simulated the cold-bending and heat-treatment of pipe bends to understand the mechanical properties of pipe bends manufactured by cold-bending followed by heat-treatment for relieving residual stress. The strength and ductility of cold-worked materials were respectively found to be higher and lower than those of the parent material although heat-treatment was carried out to relieve residual stress. In addition, the increase in strength and decrease in ductility were proportional to the applied strain levels for cold-working. It was thus inferred that the intrados and extrados regions of pipe bends that were cold-bended and heat-treated show higher strength and lower ductility compared to the parent straight pipe and that the mechanical properties at the crown region are nearly the same as those of the parent straight pipe.