• 제목/요약/키워드: Intracellular signal transduction

검색결과 135건 처리시간 0.03초

우울증의 신경생물학 (Neurobiology of Depression)

  • 김영훈;이상경;이정구;김정익
    • 생물정신의학
    • /
    • 제6권1호
    • /
    • pp.3-11
    • /
    • 1999
  • At the beginning, researches on the biology of depression or affective illness have focused mainly on the receptor functions and neuroendocrine activities. And the studies of the past years did not break new theoretical background, but the recent advances in the research on the molecular mechanisms underlying neural communication and signal transduction do add some insights to many established ideas. This article will overview some of the more recent advances in the clinical researches of depression. Our major concerns to be presented here include the followings : (1) alterations in the post-synaptic neural transduction ; (2) changes in the neurons of hypothalamic neuropeptides ; (3) decreased peptidase enzyme activities ; (4) associations of hypothalamic-pituitary-adrenal axis abnormalities with serotonin neurotransmission ; (5) role of serotonin transporter ; (6) changes in the responsiveness of intracellular calcium ion levels ; (7) the inositol deficiency theory of lithium and depression ; (8) the transcription factors including immediate early genes ; (9) recent genetic studies in some families. This brief overview will suggest that changes in DNA occur during antidepressant therapy. These changes at the DNA level initiating a cascade of events underlying antidepressant modality will give us the insights on the molecular biological basis of the pathogenesis of depression and cues for a new class of antidepressants.

  • PDF

EFFECTS OF CAFFEINE AND 2,5-DI-(tert-BUTYL)-1,4-BENZOHYDROQUINONE ON BLUE LIGHT-DEPENDENT $H^+$ PUMPING IN GUARD CELL PROTOPLASTS FROM Vicia faba L.

  • Goh, Chang-Hyo;Shimazaki, Ken-Ichiro
    • Journal of Photoscience
    • /
    • 제4권2호
    • /
    • pp.35-40
    • /
    • 1997
  • The sensory transduction processes of blue light in guard cells have been suggested the involvement of Ca$^{2+}$/calmodulin-dependent myosin light chain kinase (MLCK) or MLCK-like proteins. The source of Ca$^{2+}$ required for the signal transduction process was investigated in guard cell protoplasts (GCPs). The GCPs showed the typical H$^+$ pumping activity by blue light (200 $\mu$mol m$^{-2}$ s$^{-1}$) and fusicoccin (10 $\mu$M) under background red light (600 $\mu$mol m$^{-2}$ s$^{-1}$). The blue light-dependent H$^+$ pumping was not significantly affected by the externally changed Ca$^{2+}$ concentrations. The addition of 1 mM Ca$^{2+}$ in the bathing medium ratherly inhibited the H$^+$ pumping. In contrast, the blue light-dependent H$^+$ pumping was inhibited by caffeine and 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ), inhibitor of C$^{2+}$-ATPase in endoplasmic reticulum (ER) without inhibiting the H $^+$ pump. The inhibition by caffeine and BHQ was fully reversible. The extent of inhibition by caffeine and BHQ was larger when they were added together than when added separately. The results suggest that Ca$^{2+}$ required for the blue light-dependent H$^+$ pumping may be released from the intracellular Ca$^{2+}$ stores, probably ER in guard cells.

  • PDF

Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development

  • Ha, Woo Tae;Jeong, Ha Yeon;Lee, Seung Yoon;Song, Hyuk
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권3호
    • /
    • pp.179-185
    • /
    • 2016
  • The insulin-like growth factor (IGF) pathway is a key signal transduction pathway involved in cell proliferation, migration, and apoptosis. In dairy cows, IGF family proteins and binding receptors, including their intracellular binding partners, regulate mammary gland development. IGFs and IGF receptor interactions in mammary glands influence the early stages of mammogenesis, i.e., mammary ductal genesis until puberty. The IGF pathway includes three major components, IGFs (such as IGF-I, IGF-II, and insulin), their specific receptors, and their high-affinity binding partners (IGF binding proteins [IGFBPs]; i.e., IGFBP1-6), including specific proteases for each IGFBP. Additionally, IGFs and IGFBP interactions are critical for the bioactivities of various intracellular mechanisms, including cell proliferation, migration, and apoptosis. Notably, the interactions between IGFs and IGFBPs in the IGF pathway have been difficult to characterize during specific stages of bovine mammary gland development. In this review, we aim to describe the role of the interaction between IGFs and IGFBPs in overall mammary gland development in dairy cows.

$M_1$ Muscarine성 수용체에서 $^{123}Arginine$ 잔기의 Site-mutagenesis가 신호전달계에 미치는 영향 (Effects Of Site-mutagenesis of $^{123}Arginine$ residue in $M_1$ Muscarinic Receptor on the Signal Transduction System)

  • 이석용
    • 약학회지
    • /
    • 제44권1호
    • /
    • pp.52-59
    • /
    • 2000
  • An exceptionally conserved sequence that is shared among most G protein-coupled neurotransmitter receptors is an aspartate-arginine-tyrosine triplet that is located at the second cytoplasmic domain. Using the ml subtype of muscarinic acetylcholine receptors as an example, a point mutation of the arginine residue at position 123 into asparagine was induced. This mutation resulted in a complete blockade of the carbachol-induced increases of PI hydrolysis and intracellular $Ca^2$$^{+}$ level, in spite of the expression of the wild-type and mutant receptors at similar concentrations in Chinese hamster ovary cells. In marked contrast, the muscarinic agonist carbachol induced concentration-dependent enhancement of the activity of NO synthase at mutant ml receptors although the enhancement was significantly smaller than at wild-type ml receptors. These data suggest that this highly conserved arginine residue plays an important role in coupling of muscarinic receptors to the second messenger systems and the presence of alternate mechanisms of activation of neuronal NO synthase which might be operative in the absence of large changes in the concentration of cellular $Ca^{2+}$.2+/.

  • PDF

Pseudohypoaldosteronism Type 1

  • Cheong, Hae Il
    • Journal of Genetic Medicine
    • /
    • 제10권2호
    • /
    • pp.81-87
    • /
    • 2013
  • Pseudohypoaldosteronism (PHA), a rare syndrome of systemic or renal mineralocorticoid resistance, is clinically characterized by hyperkalemia, metabolic acidosis, and elevated plasma aldosterone levels with either renal salt wasting or hypertension. PHA is a heterogeneous disorder both clinically and genetically and can be divided into three subgroups; PHA type 1 (PHA1), type 2 (PHA2) and type 3 (PHA3). PHA1 and PHA2 are genetic disorders, and PHA3 is a secondary disease of transient mineralocorticoid resistance mostly associated with urinary tract infections and obstructive uropathies. PHA1 includes two different forms with different severity of the disease and phenotype: a systemic type of disease with autosomal recessive inheritance (caused by mutations of the amiloride-sensitive epithelial sodium channel, ENaC) and a renal form with autosomal dominant inheritance (caused by mutations of the mineralocorticoid receptor, MR). In the kidneys, the distal nephron takes charge of the fine regulation of water absorption and ion handling under the control of aldosterone. Two major intracellular actors necessary for the action of aldosterone are the MR and the ENaC. Impairment of the intracellular aldosterone signal transduction pathway results in resistance to the action of mineralocorticoids, which leads to PHA. Herein, ion handling the distal nephron and the clinico-genetic findings of PHA are reviewed with special emphasis on PHA type 1.

Inhibitory effects of scoparone through regulation of PI3K/Akt and MAPK on collagen-induced human platelets

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • 제63권2호
    • /
    • pp.131-136
    • /
    • 2020
  • When blood vessels are damaged, a fast hemostatic response should occur to minimize blood loss and maintain normal circulation. Platelet activation and aggregation are essential in this process. However, excessive platelet aggregation or abnormal platelet aggregation may be the cause of cardiovascular diseases such as thrombosis, stroke, and atherosclerosis. Therefore, finding a substance capable of regulating platelet activation and suppressing agglutination reaction is important for the prevention and treatment of cardiovascular diseases. 6,7-Dimethoxy-2H-chromen-2-one (Scoparone), found primarily in the roots of Artemisia or Scopolia plants, has been reported to have a pharmacological effect on immunosuppression and vasodilation, but studies of platelet aggregation and its mechanisms are still insufficient. This study confirmed the effect of scoparone on collagen-induced human platelet aggregation, TXA2 production, and major regulation of intracellular granule secretion (ATP and serotonin release). In addition, the effect of scoparone on the phosphorylation of the phosphoproteins PI3K/Akt and mitogen-activated protein kinases (MAPK) involved in signal transduction in platelet aggregation was studied. As a result, scoparone significantly inhibited the phosphorylation of PI3K/Akt and MAPK, which significantly inhibited platelet aggregation through TXA2 production and intracellular granule secretion (ATP and serotonin release). Therefore, we suggest that scoparone is an antiplatelet substance that regulates the phosphorylation of phosphoproteins such as PI3K/Akt and MAPK and is of value as a preventive and therapeutic agent for platelet-derived cardiovascular disease.

Cell Death by Polyvinylpyrrolidine-Coated Silver Nanoparticles is Mediated by ROS-Dependent Signaling

  • Kang, Kyeong-Ah;Jung, Hye-Youn;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제20권4호
    • /
    • pp.399-405
    • /
    • 2012
  • Silver nanoparticles (AgNPs) are widely used nanoparticles and they are mainly used in antibacterial and personal care products. In this study, we evaluated the effect of AgNPs on cell death induction in the murine dendritic cell line DC2.4. DC2.4 cells exposed to AgNPs showed a marked decrease in cell viability and an induction of lactate dehydrogenase (LDH) leakage in a time- and dose-dependent manner. In addition, AgNPs promoted reactive oxygen species (ROS)-dependent apoptosis and AgNP-induced ROS triggered a decrease in mitochondrial membrane potential. The activation of the intracellular signal transduction pathway was also observed in cells cultured with AgNPs. Taken together, our data demonstrate that AgNPs are able to induce a cytotoxic effect in DCs through ROS generation. This study provides important information about the safety of AgNPs that may help in guiding the development of nanotechnology applications.

Bovine Lactoferricin Induces Intestinal Epithelial Cell Activation through Phosphorylation of FAK and Paxillin and Prevents Rotavirus Infection

  • Jeong, Ye Young;Lee, Ga Young;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1175-1182
    • /
    • 2021
  • We investigated the effect of bovine lactoferricin (Lfcin-B), a peptide derived from bovine lactoferrin, on activation of intestinal epithelial cells in IEC-6 intestinal cell, and protection against in vivo rotavirus (RV) infection. Treatment with Lfcin-B significantly enhanced the growth of IEC-6 cells and increased their capacity for attachment and spreading in culture plates. Also, Lfcin-B synergistically augmented the binding of IEC-6 cells to laminin, a component of the extracellular matrix (ECM). In the analysis of the intracellular mechanism related to Lfcin-B-induced activation of IEC-6 cells, this peptide upregulated tyrosine-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin, which are intracellular proteins associated with cell adhesion, spreading, and signal transduction during cell activation. An experiment using synthetic peptides with various sequences of amino acids revealed that a sequence of 9 amino acids (FKCRRWQWR) corresponding to 17-25 of the N-terminus of Lfcin-B is responsible for the epithelial cell activation. In an in vivo experiment, treatment with Lfcin-B one day before RV infection effectively prevented RV-induced diarrhea and significantly reduced RV titers in the bowels of infected mice. These results suggest that Lfcin-B plays meaningful roles in the maintenance and repair of intestinal mucosal tissues, as well as in protecting against intestinal infection by RV. Collectively, Lfcin-B is a promising candidate with potential applications in drugs or functional foods beneficial for intestinal health and mucosal immunity.

Basic Fibroblast Growth Factor Increases Intracellular Magnesium Concentration through the Specific Signaling Pathways

  • Hong, Bing-Zhe;Park, Sun-Ah;Kim, Han-Na;Ma, Tian-Ze;Kim, Han-Gyu;Kang, Hyung-Sub;Kim, Hwan-Gyu;Kwak, Yong-Geun
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.13-17
    • /
    • 2009
  • Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. $Mg^{2+}$ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular $Mg^{2+}$ concentration ($[Mg^{2+}]_i$) in human umbilical vein endothelial cells (HUVECs). bFGF increased ($[Mg^{2+}]_i$) in a dose-dependent manner, independent of extracellular $Mg^{2+}$. This bFGF-induced $[Mg^{2+}]_i$ increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase $C{\gamma}$ ($PLC{\gamma}$) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced $[Mg^{2+}]_i$ increase. These results suggest that bFGF increases the $[Mg^{2+}]_i$ from the intracellular $Mg^{2+}$ stores through the tyrosine kinase/PI3K/$PLC{\gamma}$-dependent signaling pathways.

Effects of Ginsenosides on $pp60^{c-src}$ Kinase, Intracellular Calcium and Cell Proliferation in NIH 373 Cells

  • Hong, Hee-Youn;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • 제22권2호
    • /
    • pp.126-132
    • /
    • 1998
  • In the present study, we examined effects of ginseng saponins (ginsenosides) on pp60c-src protein tyrosine kinase (PTK) activity, intracellular calcium concentration ([$Ca^{2+}$]i), and cell proliferation in NIH3T3 cells. Eight different ginsenosides [ginsenoside-Rb1 (G-$Rb_1$), -$Rb_2$, -Rc, -Rd, -Re, -Rf, -$Rg_1$, -$Rg_2$) and ginseng total saponin (GTS) were used for these experiments. All ginsenosides and GTS tested stimulated the activation of $pp60^{c-src}$ kinase, and especially G-$Rb_1$,-Rd,-$Rg_1$, and -$Rg_1$ showed a higher stimulatory effect than others at 16.7 $\mu\textrm{g}$/ml of ginsenosides with a 18 hr-incubation, increasing the activity by 4.5, 3.5, 3.5, and 3.0-fold, respectively, over that of untreated control. In addition, both G-Rd and -$Rg_2$)Rg2 increased ($Ca^{2+}$), to 202 and 334 nM, respectively, about 2-3-fold above the basal level within 7min at 250 $\mu\textrm{g}$/yml of ginsenosides. The increases of ($Ca^{2+}$), were eliminated by Pretreatment of EGTA, an extracellular calcium chelator, suggtasting that they result from an influx of calcium ion from extracellular medium rather than an efflux from intracellular calcium store, endoplasmic reticulum (ER). All ginsenosides studied enhanced cell proliferation to 1.2-1.4-fold over that of untreated control at 5~250 $\mu\textrm{g}$/ml of concentrations. Interestingly the promotion of cell proliferation by ginsenosides corresponded with the activation of c-src kinase, which is an early step in the mitogenic signaling cascade. Taken together, we suggest that some ginsenosides may lead to cellProliferation via the activation of cellular signal transduction Pathway involving $pp60^{c-src}$ kinase.

  • PDF