• Title/Summary/Keyword: Intracellular enzyme activity

Search Result 208, Processing Time 0.017 seconds

Purification and Characterization of the Intracellular Alginase from Vibrio sp. AL-145 (알긴산 분해균 Vibrio sp. AL-145가 생산하는 균체내 효소의 정제 및 특성)

  • Joo, Dong-Sik;Lee, Jung-Suk;Park, Jung-Je;Cho, Soon-Yeong;Ahn, Chang-Bum;Lee, Eung-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.432-438
    • /
    • 1995
  • The intracellular alginase from Vibrio sp. AL-145 was purified by ion chromatography on DEAE-Cellulose column, Q-Sepharose column, and gel filtration on Sephadex G-100 column. The optimum pH and temperature for the activity of the purified intracellular enzyme were 8.0 and 37$\circ$C, respectively. The enzyme was stable at the pH range of 7.5-8.5, and at 30$\circ$C for 30 min. The molecular weight of the intracellular enzyme was estimated to be about 23, 000 daltons by SDS-polyacrylamide gel electrophoresis. NaCl was required for enzyme activity and the optimum concentration was 0.5 M. The activity of intracellular enzyme was inhibited by Co$^{2+}$, Hg$^{2+}$, Zn$^{2+}$, 0-phenanthroline, $\rho$-CMB, EDTA and iodoacetate, and stimulated by Ca$^{2+}$, L-cysteine and 2-mercaptoethanol. This enzyme was an alginase specifically degrading alginic acid.

  • PDF

Purification and Characterization of Intracellular Cellulase from Aspergillus oryzae ITCC-4857.01

  • Begum, Ferdousi;Absar, Nurul
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • Purification and characterization of intracellular cellulase produced by A. oryzae ITCC-4857.01 are reported. The enzyme was purified by ion-exchange chromatography using DEAE-cellulose followed by Gel filtration. The purification achieved was 41 fold from the crude extract with yield of 27%. The purified enzyme showed single band on poly acrylamide gel. The molecular weight as determined by SDS-PAGE and gel filtration was 38 KDa and 38.6 KDa respectively and contained only one subunit. The enzyme is glycoprotien as nature and contained 0.67% neutral sugar. The apparent Km value of the enzyme against cellulose was 0.83%. The enzyme showed the highest relative ativities on CMC followed by avicel, salicin and filter paper. The optimum pH of activity was 5.5 and very slight activity was observed at or above pH 7.5 as well as bellow pH 3.5. The optimum tempreture of the activity was $45^{\circ}C$ and the highest activity was exhibited in 35 to $45^{\circ}C$. The enzyme lost their activities almost completely (95${\sim}$100%) at $80^{\circ}C$ or above and as well as bellow $25^{\circ}C$.

Enzymatic Properties of Intracellular Adenosine Deaminase from Nocardioides sp. J-326TK

  • Hong-Ki Jun;Tae-Sook Kim
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.64-68
    • /
    • 1999
  • The properties of purified intracellular adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) of Nocardioides sp. J-326TK isolated from soil have been studied. The enzyme deaminated adenosine and 2`-deoxyadenosine and the respective {TEX}$K_{M}${/TEX} values were 4.0×{TEX}$10^{-4}${/TEX} M and 5.0× {TEX}$10^{-4}${/TEX} M, but the enzyme was not active on 8-bromoadenosine, 6-methylaminopurine riboside, ATP, ADP, 2`-AMP, 3`-AMP, 5`-AMP, dAMP, cAMP, NAD, FAD, NADP and adenine. The enzyme activity was strongly inhibited by the addition of {TEX}$Hg^{2+}${/TEX} and {TEX}$Ag^{+}${/TEX}, {TEX}$Cu^{2+}${/TEX}, {TEX}$Co^{2+}${/TEX} and {TEX}$Mn^{2+}${/TEX} also inhibited the activity but much less extent. The effect of alkyl reagents, metal chelating reagents and certain other compounds on the enzyme activity were also examined. No reagent activated the enzyme. On the contrary, the enzyme reaction was slightly inhibited by o-phenanthroline and 6-benzyladenosine.

  • PDF

Purification and Some Properties of an Intracellular Protease from Pseudomonas Carboxydovorans (Pseudomonas carboxydovorans의 세포내 단백질 가수분해 효소의 정제 및 특징)

  • 이준행;김영민
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 1989
  • A soluble intracellular protease from cells of Pseudomonas carboxydovorans, a carboxydobacterium, grown on nutrient broth was purified 68-fold in five steps to better than 95% homogeneity with a yield of 2.4% using azocasein as a substrate. The enzyme activity was not detected from cells grown on pyruvate, succinate, acetate, or CO as a sole source of carbon and energy. The molecular weight of the native enzyme was determined to be 53,000. Sodium dodecyl sulfate-gel electrophoresis revealed the purified enzyme a monomer. The enzyme was found to be a serine-type protease. The enzyme activity was inhibited completely by several divalent cations such as $Cd^{2+}, Cu^{2+}, Hg^{2+}$, and $Fe^{2+}$. The enzyme was also inhibited by EGTA, but was stimulated by iodoacetamide. The optimal pH and temperature for the enzyme reaction were found to be 8.0 and $50^{\circ}C$, respectively. The enzyme was inactive on CO dehydrogenase.

  • PDF

Purification and Characterization of an Intracellular Protease form Pseudomonas carboxydovorans DSM 1227 Grown on Carbon Monoxide

  • Ho, Bae-Ki;Kim, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.299-304
    • /
    • 1992
  • An intracellular protease form cells of Pseudomonas carboxydovorans DSM 1227 grown on carbon monoxide was purified 57-fold in six steps to homogeneity with a yield of 4.3% using azocoll as a substrate. The molecular weight of the enzyme was determined to be 150,000. Sodium dodecyl sulfate-gel electrophoresis revealed the purified enzyme to be a dimer with two identical subunits of molecular weight 72,000. The enzyme was stimulated by $Mg^{2+}$ but was inhibited completely by $Cd^{2+}$ $Fe^{2+}$ $Hg^{2+}$, and $^Zn{2+}$ The enzyme activity was also inhibited by EDTA, EGTA, phenylmethylsulfonyl fluoride, and phenyl glyoxal, but was increased by 1-ethyl-3(dimethyl aminopropyl fluoride, and phenyl glyoxal, but was increased by 1-ethyl-3(dimethyl aminopropyl)carbodiimide, iodoacetamide and dithiothereitol. The optimal pH and temperature for the enzyme reaction were found to be 7-8 and 50.deg.C, respectively. Casein and bovine serum albumin were hydrolyzed by the enzyme, but carbon monoxide dehydrogenase was not.

  • PDF

Purification and Characterization of an Intracellular Protease from Pseudomonas carboxydohydrogena (Pseudomonas charboxydohydrogena에서 분리 정제된 세포내 단백질 가수분해효소의 특성)

  • 이혜숙;김영민
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.167-171
    • /
    • 1991
  • An intracellular protease from cells of Pseudomonas carboxydohydrogena grown on nutrient broth was purified to better than 95% homogeneity in five steps using azocaseine as a substrate. The molecular weight of the native enzyme was determined to be 125, 000. Sodium dodecyl sulfate-gel electrophoresis revealedat least two non-identical subunits of molecular weight 70, 000 and 56, 000. The enzyme activity was completely ingibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate. The enzyme was also inhibited by $Mg^{2+}$ , $Zn^{2+}$ , $Cd^{2+}$, $Cu^{2+}$ , and $Fe^{2+}$ , but was stimulated by iodoacetamide. Maximal reaction rate of the enzyme was observed at pH8.0 and 30.deg.C. The isoelectric point of the enzyme was found to be 7.5. The enzyme was unable to hydrolyze carbon monoxide dehydrogenase.

  • PDF

Purification and Properties of Intracellular Invertase from Alkalophilic and Thermophilic Bacillus cereus TA-11

  • Yoon, Min-Ho;Choi, Woo-Young;Kwon, Su-Jin;Yi, Sung-Hun;Lee, Dae-Hyung;Lee, Jong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.196-201
    • /
    • 2007
  • An intracellular invertase was purified to homogeneity from the cell extract of an alkalophilic and thermophilic Bacillus sp. TA-11, which was classified as a new species belonging to Bacillus cereus based on chemotaxanomic and phylogenetic analyses. The purified enzyme with a recovery of 26.6% was determined to be a monomeric protein with a molecular weight of 23 kDa by SDS-PAGE and 26 kDa by gel filtration. The maximum enzyme activity was observed at pH 7.0 and $50^{\circ}C$, and the purified enzyme was stable at the pH range of 5.0 to 8.0 and below $60^{\circ}C$. $K_m$ and $V_{max}$ values of the enzyme for sucrose were 370 mM and 3.0 ${\mu}M$ per min, respectively. The enzyme activity was significantly inhibited by bivalent metal ions ($Hg^{2+}$, $Cd^{2+}$ and $Cu^{2+}$) and sugars (glucose and fructose).

Purification and Characterization of Adenosine deaminase from Aspergillus oryzae (Aspergillus oryzae에서 Adenosine Deaminase의 정제와 특성)

  • Choi, Hye-Seon
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 1993
  • Intracellular adenosine deaminase (ADA) from Aspergillus oryzae was purified using ammonium sulfate fractionation, a DEAE-Sephadex A-50 anion exchange chromatography, an ultrafiltration using a PM 10 membrane and two times of Sephadex G-100 gel filtration chromatography. The enzyme was purified 151 fold with a 9% recovery. Purified enzyme gave a single protein band with a molecular weight of 105,000 delton. The enzyme was reasonably stable. The enzyme activity was kept even after 1 hr incubation at 55.deg.C, but decreased significantly at 60.deg.C. The pH optimum was found to be from 6.5 to 7.5. Among tested compounds, the substrate activity was found with adenosine, adenine arainofuranoside, formymcin A, 2'-deoxyadenosine, 3'-deoxyadenosine, 2', 3'-isopropylidene adenosine, 2,6-diaminopurine deoxyriboside, .betha.-nicotinamide adenine dinucleotide (reduced form), 6-chloropurine riboside, 2'-adenine monophosphate (AMP), 3'-AMP and 5'-AMP. The values of Km of adenosine and 2'-deoxyadenosine were calculated to be 500 and .$710\mu$m, respectively. ADA was sensitivite to $Zn^{2+}$, $^Cu{2+}$ and $Fe^{3+}$, p-chloromercuribenzoate and mersalyl acid inactivated the enzyme. The activity of enzyme was not changed when ADA was incubated with dithiothreititol, 2-mercaptoethanol, N-ethylmaleimide, iodoacetic acid and iodoacetamide.

  • PDF

Chemical Modification of Intracellular Cytosine Deaminase from Chromobacterium violaceum YK 391

  • Kim, Jung;Kim, Tae-Hyun;Yu, Tae-Shick
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. Amino acid residues located in or near the active sites of the intracellular cytosine deaminase from chromobacterium violaceum YK 391 were identified by chemical modification studies. The enzymic activity was completely inhibited by chemical modifiers, such as 1mM NBS, chloramine-T, $\rho-CMB,\;\rho-HMB$ and iodine, and was strongly inhibited by 1mM PMSF and pyridoxal 5'-phosphate. This chemical deactivation of the enzymic activity was reversed by a high concentration of cytosine. Furthermore, the deactivation of the enzymic activity by $\rho-CMB$ was also reversed by 1mM cysteine-HCI, DTT and 2-mercaptoethanol. These results suggested that cysteine, tryptophan and methionine residues might be located in or near the active sites of the enzyme, while serine and lysine were indirectly involved in the enzymic activity. The intracellular cytosine deaminase from C violaceum YK 391 was assumed to be a thiol enzyme.

Purification and Properties of Intracellular Cytosine Deaminase from Chromobacterium violaceum YK 391

  • KIM , JUNG;YU, TAE-SHICK
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1182-1189
    • /
    • 2004
  • Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. The intracellular cytosine deaminase from Chromobacterium violaceum YK 391 was purified to apparent homogeneity with 272.9-fold purification with an overall yield of $13.8\%$. The enzyme consisted of dimeric polypeptides of 63 kDa, and the total molecular mass was calculated to be approximately 126 kDa. Besides cytosine, the enzyme deaminated 5-fluorocytosine, cytidine, 6-azacytosine, and 5-methylcytosine, but not 5-azacytosine. Optimum pH and temperature for the enzyme reaction were 7.5 and $30^{\circ}C$, respectively. The enzyme was stable at pH 6.0 to 8.0, and at 30T for a week. About $70\%$ of the enzyme activity was retained at $60^{\circ}C$ for 5 min. The apparent $K_{m}$ values for cytosine, 5-fluorocytosine, and 5-methylcytosine were calculated to be 0.38 mM, 0.87 mM, and 2.32 mM, respectively. The enzyme activity was strongly inhibited by 1 mM $Hg^{2+},\;Zn^{2+},\;Cu^{2+},\;Pb^{2+},\;and\;Fe^{3+}$, and by o-phenanthroline, $\alpha,\;{\alpha}'$-dipyridyl, p-choromercuribenzoate, N-bromosuccinimide, and cWoramine­T. In addition, the enzyme activity was strongly inhibited by I mM 2-thiouracil, and weakly inhibited by 2-thiocytosine, or 5-azacytosine. Finally, intracellular and extracellular cytosine deaminases from Chromobacterium violaceum YK 391 were found to have a different optimum temperature, apparent $K_{m}$ value, and molecular mass.