• Title/Summary/Keyword: Intestinal absorption

Search Result 272, Processing Time 0.028 seconds

Available phosphorus levels modulate gene expression related to intestinal calcium and phosphorus absorption and bone parameters differently in gilts and barrows

  • Julia Christiane Votterl;Jutamat Klinsoda;Simone Koger;Isabel Hennig-Pauka;Doris Verhovsek;Barbara U. Metzler-Zebeli
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.740-752
    • /
    • 2023
  • Objective: Dietary phytase increases bioavailability of phytate-bound phosphorus (P) in pig nutrition affecting dietary calcium (Ca) to P ratio, intestinal uptake, and systemic utilization of both minerals, which may contribute to improper bone mineralization. We used phytase to assess long-term effects of two dietary available P (aP) levels using a one-phase feeding system on gene expression related to Ca and P homeostasis along the intestinal tract and in the kidney, short-chain fatty acids in stomach, cecum, and colon, serum, and bone parameters in growing gilts and barrows. Methods: Growing pigs (37.9±6.2 kg) had either free access to a diet without (Con; 75 gilts and 69 barrows) or with phytase (650 phytase units; n = 72/diet) for 56 days. Samples of blood, duodenal, jejunal, ileal, cecal, and colonic mucosa and digesta, kidney, and metacarpal bones were collected from 24 pigs (6 gilts and 6 barrows per diet). Results: Phytase decreased daily feed intake and average daily gain, whereas aP intake increased with phytase versus Con diet (p<0.05). Gilts had higher colonic expression of TRPV5, CDH1, CLDN4, ZO1, and OCLN and renal expression of TRPV5 and SLC34A3 compared to barrows (p<0.05). Phytase increased duodenal expression of TRPV5, TRPV6, CALB1, PMCA1b, CDH1, CLDN4, ZO1, and OCLN compared to Con diet (p<0.05). Furthermore, phytase increased expression of SCL34A2 in cecum and of FGF23 and CLDN4 in colon compared to Con diet (p<0.05). Alongside, phytase decreased gastric propionate, cecal valerate, and colonic caproate versus Con diet (p<0.05). Phytase reduced cortical wall thickness and index of metacarpal bones (p<0.05). Conclusion: Gene expression results suggested an intestinal adaptation to increased dietary aP amount by increasing duodenal trans- and paracellular Ca absorption to balance the systemically available Ca and P levels, whereas no adaption of relevant gene expression in kidney occurred. Greater average daily gain in barrows related to higher feed intake.

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

The Role of Functional Feed Additives in Modulating Intestinal Health and Integrity

  • Kocher, Andreas
    • Korean Journal of Poultry Science
    • /
    • v.39 no.1
    • /
    • pp.33-37
    • /
    • 2012
  • One of the biggest challenges for the animal feed industry in the coming years will be to meet the growing demand in animal protein in light of increased cost of feed ingredient as well as tougher restrictions on the use of antimicrobial growth promoters imposed by consumers and governments. A key focus area will be to maximise feed efficiency and minimise nutrient waste. It has been widely acknowledged that the composition of the intestinal microflora is closely related to intestinal health and performance of animals. Advanced microbial techniques have shown a close relationship between bacterial communities and their ability to modulate nutrient absorption and processing. In addition it has been recognised that modulating the immune response has significant impact on overall health as well as overall nutrient demand. Molecular techniques are a useful tool to gain an understanding of the impact of dietary interventions including the use of functional feed additives on specific changes in microbial communities or the immune system. Most these techniques however focus on the evaluation of large changes in bacterial compositions and often underestimate or neglect to recognise small changes in microbial diversity or behaviour changes without any measurable immune response. The key to understanding the relationship between specific nutritional intervention and the impact on health and performance lies in a deeper understanding of the impact of these nutrients on the expression of specific genes or specific metabolic pathways. The development of molecular tools as a result of developments in the field of Nutrigenomics has enabled researchers to study the effects of specific nutrients on the whole genome or in other words, the effect of thousands of genes simultaneously, and has opened a completely different avenue for nutritional research.

Effects of Glucagon-like Peptide-2 on Morphology, Proliferation and Enzyme Activity of Intestinal Enterocyte Cells of Weaned Piglets In vitro

  • Jia, Gang;Jiang, RongChuan;Wang, KangNing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1160-1166
    • /
    • 2009
  • This study was conducted according to the single-factor design principle to investigate in vitro the effects of different glucagon-like peptide-2 (GLP-2) concentrations (0, $1{\times}10^{-11}$, $1{\times}10^{-10}$, $1{\times}10^{-9}$, $1{\times}10^{-8}$ and $1{\times}10^{-7}$ mol/L) on the morphology, proliferation and enzyme activity of intestinal enterocyte cells of 28-d-old weaned piglets. These cells were primary cultured in 4 pieces of 24-well cell culture plate. After having been grown for 48 h in culture media with hGLP-2, the ileal enterocyte cells of 28-d-old weaned piglets exhibited the typical characteristics of simple columnar epithelium. Compared with the control groups, the quantities of treated cells significantly increased (p<0.05) and their corresponding absorption values in 540 nm (MTT OD) also significantly increased (p<0.01). Likewise, lactic acid concentration, total protein content and protein retention significantly increased (p<0.05). $Na^{+}$, $K^{+}$-ATP enzyme activity was more active (p<0.05), although the activity of alkaline phosphatase, lactic acid dehydrogenase and creatine phosphokinase in culture media significantly decreased (p<0.01). To summarize, the results indicated that GLP-2 in vitro is capable of promoting the proliferation of intestinal enterocyte cells of 28-d weaned piglets, restraining their apoptosis and maintaining the integrity of their morphology.

The Role of Intestinal Microflora in Anti-Inflammatory Effect of Baicalin in Mice

  • Jung, Myung-Ah;Jang, Se-Eun;Hong, Sung-Woon;Hana, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.36-42
    • /
    • 2012
  • Baicalin, a main constituent of the rhizome of Scutellaria baicalensis, is metabolized to baicalein and oroxylin A in the intestine before its absorption. To understand the role of intestinal microflora in the pharmacological activities of baicalin, we investigated its anti-inflammatory effect in mice treated with and without antibiotics. Orally administered baicalin showed the anti-inflammatory effect in mice than intraperitoneally treated one, apart from intraperitoneally administered its metabolites, baicalein and oroxylin A, which potently inhibited LPS-induced inflammation. Of these metabolites, oroxylin A showed more potent anti-inflammatory effect. However, treatment with the mixture of cefadroxil, oxytetracycline and erythromycin (COE) significantly attenuated the anti-inflammatory effect of orally administered baicalin in mice. Treatment with COE also reduced intestinal bacterial fecal ${\beta}$-glucuronidase activity. The metabolic activity of human stools is significantly different between individuals, but neither between ages nor between male and female. Baicalin was metabolized to baicalein and oroxylin A, with metabolic activities of $1.427{\pm}0.818$ and $1.025{\pm}0.603$ pmol/min/mg wet weight, respectively. Baicalin and its metabolites also inhibited the expression of pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$, and the activation of NF-${\kappa}B$B in LPS-stimulated peritoneal macrophages. Of them, oroxylin A showed the most potent inhibition. Based on these findings, baicalin may be metabolized to baicalein and oroxylin A by intestinal microflora, which enhance its anti-inflammatory effect by inhibiting NF-${\kappa}B$ activation.

Up-regulation of NHE8 by somatostatin ameliorates the diarrhea symptom in infectious colitis mice model

  • Lei, Xuelian;Cai, Lin;Li, Xiao;Xu, Hua;Geng, Chong;Wang, Chunhui
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.269-275
    • /
    • 2018
  • $Na^+/H^+$ exchangers (NHEs) have been shown to be involved in regulating cell volume and maintaining fluid and electrolyte homeostasis. Pooled evidences have suggested that loss of $Na^+/H^+$ exchanger isoform 8 (NHE8) impairs intestinal mucosa. Whether NHE8 participates in the pathology of infectious colitis is still unknown. Our previous study demonstrated that somatostatin (SST) could stimulate the expression of intestinal NHE8 so as to facilitate $Na^+$ absorption under normal condition. This study further explored whether NHE8 participates in the pathological processes of infectious colitis and the effects of SST on intestinal NHE8 expression in the setting of infectious colitis. Our data showed that NHE8 expression was reduced in Citrobacter rodentium (CR) infected mice. Up-regulation of NHE8 improved diarrhea symptom and mucosal damage induced by CR. In vitro, a similar observation was also seen in Enteropathogenic E. coli (EPEC) infected Caco-2 cells. Seglitide, a SST receptor (SSTR) 2 agonist, partly reversed the inhibiting action of EPEC on NHE8 expression, but SSTR5 agonist (L-817,818) had no effect on the expression of NHE8. Moreover, SST blocked the phosphorylation of p38 in EPEC-infected Caco-2 cells. Taken together, these results suggest that enhancement of intestinal NHE8 expression by SST could ameliorate the symptoms of mice with infectious colitis.

Preparation and Characterization of Tissue Engineered Scaffold Using Porcine Small Intestinal Submucosa and Hyaluronic Acid (돼지의 소장점막하 조직과 히알루론산을 이용한 조직공학적 담체의 제조 및 특성분석)

  • Lim, Ji-Ye;Kim, Soon-Hee;Kang, Gil-Son;Rhee, John M.
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.415-420
    • /
    • 2008
  • The porcine small intestinal submucosa (SIS) without immunorejection responses and hyalunonic acid (HA) can be used as biomaterials. In this study, we tried to design and characterize novel sponge. SIS- HA sponge was prepared by freeze-drying after addition 1wt% HA solution into fabricated SIS sponge. Sponge was crosslinked with 1-ethyl-(3-3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) solution with 100mM concentration for 24 hrs and lyophilized. SIS-HA sponge was characterized by scanning electron microscopy and fourier transform infrared spectrometer. And water absorption ability of sponge was evaluated. We seeded NIH/3T3 cells in SIS-HA sponge and cellular attachment was assayed by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltertazolium-bromide (MTT) test. We demonstrated presence of HA in SIS-HA sponge from C-O functional group observed by the FT-IR analysis. Moreover, we confirmed low cytotoxicity and high cell viability of the SIS-HA sponges. Therefore, we could expect that SIS- HA scaffolds are applicable for the tissue regeneration.

Enhanced Paclitaxel Bioavailability after Oral Administration of Paclitaxel Coadministered with Quercetin in Rats.

  • Choi, Jun-Shik;Kim, Je-Ho;Lee, Jin-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.411.1-411.1
    • /
    • 2002
  • The purpose of this study was to investigate the effect of quercetin on the bioavailability of paclitaxel orally coadministered in rats Paclitaxel is reported to be metabolized by cytochrome p-450(CYP3.A,)in both the liver and epithelial cells of small intestine and also absorption of paclitaxel is inhibited by p-glycoprotein efflux Pump in the intestinal mucosa. This resulted in poor orall bioavailability of paclitaxel. Area under the plasma concentration-time curve (AUC) of paclitaxel in combination with quercetin were significantly (p< 0.01) higher than those of control. (omitted)

  • PDF

Transport of Organic Cations across Caco-2 Cell Monolayers

  • Kim, Kyong;Chung, Suk-Jae;Shim, Chang-Koo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.415.1-415.1
    • /
    • 2002
  • Apical to basal transport of organic cations (OCs) such as tributylmethylammonium (TBuMA), triethyimethylammonium (TEMA). 1-methyl-4-phenylpyridinium (MPP), and berberine across Caco-2 cell monolayers was measured to elucidate the intestinal absorption of OCs. Basal to apical transport of MPP and berberine was larger than apical to basal transport and showed temperature dependency and concentration dependency. indicating that MPP and berberine are secreted into the inteslinal lumen. (omitted)

  • PDF