DOI QR코드

DOI QR Code

Effects of Glucagon-like Peptide-2 on Morphology, Proliferation and Enzyme Activity of Intestinal Enterocyte Cells of Weaned Piglets In vitro

  • Jia, Gang (Animal Nutrition Institute of Sichuan Agricultural University) ;
  • Jiang, RongChuan (Animal Nutrition Institute of Sichuan Agricultural University) ;
  • Wang, KangNing (Animal Nutrition Institute of Sichuan Agricultural University,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education)
  • Received : 2008.12.13
  • Accepted : 2009.03.10
  • Published : 2009.08.01

Abstract

This study was conducted according to the single-factor design principle to investigate in vitro the effects of different glucagon-like peptide-2 (GLP-2) concentrations (0, $1{\times}10^{-11}$, $1{\times}10^{-10}$, $1{\times}10^{-9}$, $1{\times}10^{-8}$ and $1{\times}10^{-7}$ mol/L) on the morphology, proliferation and enzyme activity of intestinal enterocyte cells of 28-d-old weaned piglets. These cells were primary cultured in 4 pieces of 24-well cell culture plate. After having been grown for 48 h in culture media with hGLP-2, the ileal enterocyte cells of 28-d-old weaned piglets exhibited the typical characteristics of simple columnar epithelium. Compared with the control groups, the quantities of treated cells significantly increased (p<0.05) and their corresponding absorption values in 540 nm (MTT OD) also significantly increased (p<0.01). Likewise, lactic acid concentration, total protein content and protein retention significantly increased (p<0.05). $Na^{+}$, $K^{+}$-ATP enzyme activity was more active (p<0.05), although the activity of alkaline phosphatase, lactic acid dehydrogenase and creatine phosphokinase in culture media significantly decreased (p<0.01). To summarize, the results indicated that GLP-2 in vitro is capable of promoting the proliferation of intestinal enterocyte cells of 28-d weaned piglets, restraining their apoptosis and maintaining the integrity of their morphology.

Keywords

References

  1. Benjamin, M. A., D. M. McKay, P. C. Yang, H. Cameron and M. H. Perdue. 2000. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut. 47:112-119 https://doi.org/10.1136/gut.47.1.112
  2. Boushey, R. P., B. Yusta and D. J. Drucker. 2001. Glucagon-like peptide (GLP)-2 reduces chemotherapy associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Res. 61:687-693
  3. Burrin, D. G.., B. Stoll, R. Jiang, Y. Petersen, J. Elnif, R. K. Buddington, M. Schmidt, J. J. Holst, B. Hartmann and P. T. Sangild. 2000. GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am. J. Physiol. Gastr. L. Physiol. 279:G1249-G1256 https://doi.org/10.1152/ajpgi.2000.279.6.G1249
  4. Burrin, D. G., B. Stoll and X. F. Guan. 2003. Glucagon-like peptide 2 function in domestic animals. Domes. Anim. Endocrin. 23:103-122 https://doi.org/10.1016/S0739-7240(02)00210-2
  5. Burrin, D. G., B. Stoll, X. F. Guan, L. W. Cui, X. Y. Chang and J. J. Holst. 2005. Glucagon-like peptide 2 dose-dependently activates intestinal cell survival and proliferation in neonatal piglets. Endocrinol. 146:(1)22-32 https://doi.org/10.1210/en.2004-1119
  6. Cottrell, J. J., B. Stoll, R. K. Buddington, J. E. Stephens, L. Cui, X. Chang and D. G. Burrin. 2006. Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets. Am. J. Physiol. Gastr. L. Physiol. 290:2(1),G293-G300 https://doi.org/10.1152/ajpgi.00275.2005
  7. Estall, J. L. and D. J. Drucker. 2003. Dual regulation of cell proliferation and survival via activation of Glucagon-like peptide-2 receptor signaling. J. Nutr. 133:3708-3711 https://doi.org/10.1093/jn/133.11.3708
  8. Estall, J. L., B. Yusta and D. J. Drucker. 2004. Lipid raftdependent Glucagon-like peptide-2 receptor trafficking occurs independently of agonist-induced desensitization. Mol. Biol. Cell. 15:3673-3687 https://doi.org/10.1091/mbc.E03-11-0825
  9. Evans, G. S., N. Flint and A. S. Somers. 1992. The development of a method for the preparation of rat intestinal cell primary cultures. J. Cell Sci. 101:219-231 https://doi.org/10.1007/978-1-59745-019-5_14
  10. Han, S. Y., M. K. Gupta, S. J. Uhm and H. T. Lee. 2009. Isolation and in vitro culture of pig spermatogonial stem cell. Asian-Aust. J. Anim. Sci. 22:187-193 https://doi.org/10.5713/ajas.2009.80324
  11. Hartmann, B., J. Thulesen, H. Kissow, S. Thulesen, C. Orskov, C. Ropke, S. S. Poulsen and J. J. Holst. 2000. Dipeptidyl peptidase IV inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice. Endocrinol. 141:4013-4020 https://doi.org/10.1210/en.141.11.4013
  12. He, Y. P., S. H. W. Chu and W. A. Walker. 1993. Nucleotide supplements alter proliferation and differentiation of cultured human (Caco-2) and rat (IEC-6) intestinal epithelial cells. J. Nutr. 123:1017-1027
  13. Kelly, C. M., P. Tyers, M. Borg, C. N. Svendsen, S. B. Dunnett and A. E. Rosser. 2005. EGF and FGF-2 responsiveness of rat and mouse neural precursors derived from the embryonic CNS. Brain Res. Bull. 68:83-98 https://doi.org/10.1016/j.brainresbull.2005.08.020
  14. Kim, Y. G., J. D. Lohakare, J. H. Yun, S. Heo and B. J. Chae. 2007. Effect of feeding levels of microbial fermented soy protein on the growth performance, nutrient digestibility and intestinal morphology in weaned piglets. Asian-Aust. J. Anim. Sci. 20:399-404 https://doi.org/10.5713/ajas.2007.399
  15. Koldovsky, O., J. Britton, J. Grimes and P. Schaudies. 1991. Milkborne epidermal growth factor (EGF) and its processing in developing gastrointestinal tract. Endocrine Regulations 25:58-62
  16. Martin, G. R., L. E. Wallace and D. L. Sigalet. 2004. Glucagonlike peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am. J. Physiol. Gastr. L. Physiol. 286:G964-G972 https://doi.org/10.1152/ajpgi.00509.2003
  17. Munroe, D. G., A. K. Gupta, F. Kooshesh, T. B. Vyas, G. Rizkalla, H. Wang, L. Demchyshyn, Z. J. Yang, R. K. Kamboj, H. Chen, K. McCallum, M. Sumner-Smith, D. J. Drucker and A. Crivich. 1999. Prototypic G-protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA. 96:1569-1573 https://doi.org/10.1073/pnas.96.4.1569
  18. Nielsen, T. T., P. T.Sangild, J. Elnif, K. Sorensen, T. Leser, J. J. Holst, B. Hartmann, B. B. Jensen and M. S. Hedemann. 2003. Effects of GLP-2 treatment and antibiotics on gut structure and function during pig weanling diarrhea. In: Proceedings of the 9th International Symposium on Digestive Physiology in Pigs. Banff, Alberta, Canada. pp. 161-163
  19. Pedersen, N. B., K. R. Hjollund, A. H. Johnsen, C. Orskov, M. M. Rosenkilde, B. Hartmann and J. J. Holst. 2008. Porcine glucagon-like peptide-2: structure, signaling, metabolism and effects. Regul. Peptides. 146:310-320 https://doi.org/10.1016/j.regpep.2007.11.003
  20. Petersen, Y. M., D. G. Burrin, M. Schmidt, B. Hartmann, J. J. Holst and P. T. Sangild. 2001. Glucagon-like peptide 2 has differential effects on small intestinal growth and function in fetal and neonatal pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R1986-R1993 https://doi.org/10.1152/ajpregu.2001.281.6.R1986
  21. Petersen, Y. M., J. Elnif, M. Schmidt and P. T. Sangild. 2002. Glucagon-like peptide 2 enhances maltase-glucoamylase and sucrase-isomaltase gene expression and activity in parenterally fed premature neonatal piglets. Pediatr. Res. 52:498-503 https://doi.org/10.1203/00006450-200210000-00007
  22. Petersen, Y. M., B. Hartmann, J. J. Holst, I. L. Huerou-Luron, C. R. Bj$\o$rnvad and P. T. Sangild. 2003. Introduction of enteral food increases plasma GLP-2 and decreases GLP-2 receptor mRNA abundance during pig development. J. Nutr. 133:1781-1786 https://doi.org/10.1093/jn/133.6.1781
  23. Sangild, P. T., K. A. Tappenden, C. Malo, Y. M. Petersen, J. Elnif, A. L.Bartholome and R. K. Buddington. 2006. Glucagon-like peptide 2 stimulates intestinal nutrient absorption in parenterally fed newborn pigs. J. Pediatr. Gastr. Nutr.. 43:160-167 https://doi.org/10.1097/01.mpg.0000228122.82723.1b
  24. Sangild, P. T., C. Malo, M. Schmidt, Y. M. Petersen, J. Elnif, J. J. Holst and R. K. Buddington. 2007. Glucagon-like peptide 2 has limited efficacy to increase nutrient absorption in fetal and preterm pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R2179-R2184 https://doi.org/10.1152/ajpregu.00395.20070363-6119/07$8.00
  25. Sigalet, D. L., O. Bawazir, G. R. Martin, L. E. Wallace, G. Zaharko, A. Miller and A. Zubaidi. 2006. Glucagon-like peptide-2 induces a specific pattern of adaptation in remnant jejunum. Digest. Dis. Sci. 51:1557-1566 https://doi.org/10.1007/s10620-006-9077-5
  26. Velazquez, E., J. M. Ruiz-Albusac and E. Blazquez. 2003. Glucagon-like peptide-2 stimulates the proliferation of cultured rat astrocytes. Eur. J. Biochem. 270:3001-3009 https://doi.org/10.1046/j.1432-1033.2003.03677.x
  27. Washizawa, N., L. H. Gu, L. Gu, K. P. Openo, D. P. Jones and T. R. Ziegler. 2004. Comparative effects of glucagon-like peptide-2 (GLP-2), growth hormone (GH), and keratinocyte growth factor (KGF) on markers of gut adaptation after massive small bowel resection in rats. JPEN-J Parenter Enter. Nutr. 28:399-409 https://doi.org/10.1177/0148607104028006399
  28. Yang, Y. X., Y. G. Kim, J. D. Lohakare, J. H. Yun, J. K. Lee, M. S. Kwon, J. I. Park, J. Y. Choi and B. J. Chae. 2007. Comparative efficacy of different soy protein sources on growth performance, nutrient digestibility and intestinal morphology in weaned pigs. Asian-Aust. J. Anim. Sci. 20:775-783 https://doi.org/10.5713/ajas.2007.775