• 제목/요약/키워드: Intestinal Growth

검색결과 592건 처리시간 0.026초

Medicinal herb extracts ameliorate impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent porcine epidemic diarrhea virus

  • Kim, Hyeun Bum;Lee, Chul Young;Kim, Sung Jae;Han, Jeong Hee;Choi, Keum Hwa
    • Journal of Animal Science and Technology
    • /
    • 제57권10호
    • /
    • pp.33.1-33.7
    • /
    • 2015
  • The objective of this study was to evaluate effects of a combined use of extracts of medicinal herbs Taraxaumi mongolicum, Viola yedoensis Makino, Rhizoma coptidis, and Radix isatidis (MYCI) on porcine epidemic diarrhea (PED). Twenty-two 3-day-old piglets received an oral challenge with $3{\times}10^{3.5}$ $TCID_{50}$ of the virulent PED virus (PEDV) in PBS or PBS only and daily oral administration of 60 mg of the MYCI mixture suspended in milk replacer or the vehicle for 7 days in a $2{\times}2$ factorial arrangement of treatments. Average daily gain (ADG) increased (p < 0.05) in response to the MYCI treatment in the PEDV-challenged piglets (-18 vs. 7 g for the vehicle- vs. MYCI-administered group), but not in unchallenged animals (27 vs. 28 g). Diarrhea score and fecal PEDV shedding, however, were not influenced by the MYCI treatment. The PEDV challenge caused severe intestinal villus atrophy and crypt hyperplasia, both of which were alleviated by administration of the MYCI mixture as indicated by an increase in the villus height and a decrease in the crypt depth due to the treatment. Overall, medicinal herb extracts used in this study ameliorated impaired growth performance and intestinal lesion of newborn piglets challenged with the virulent PEDV. Therefore, our results suggest that the MYCI mixture could be used as a prophylactic or therapeutic agent against PED.

Biotransformation of Intestinal Bacterial Metabolites of Ginseng Saponin to Biologically Active Fatty-acid Conjugates

  • Hasegawa Hideo;Saiki Ikuo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.317-334
    • /
    • 2002
  • Ginsenosides are metabolized (deglycosylated) by intestinal bacteria to active forms after oral administration. 20(S)-Protopanaxadiol $20-O-{\beta}-D-glucopyranoside$ (M1) and 20(S)-protopanaxatriol (M4) are the main intestinal bacterial metabolites (IBMs) of protopanaxadiol- and protopanaxatriol-type glycosides. M1 was selectively accumulated into the liver soon after its intravenous (i.v.) administration to mice, and mostly excreted as bile; however, some M1 was transformed to fatty acid ester (EMl) in the liver. EM1 was isolated from rats in a recovery dose of approximately $24mol\%.$ Structural analysis indicated that EM1 comprised a family of fatty acid mono-esters of M1. Because EM1 was not excreted as bile as Ml was, it was accumulated in the liver longer than M1. The in vitro cytotoxicity of M1 was attenuated by fatty acid esterification, implying that esterification is a detoxification reaction. However, esterified M1 (EM1) inhibited the growth of B16 melanoma more than Ml in vivo. The in vivo antitumor activity paralleled with the pharmacokinetic behavior. In the case of M4, orally administered M4 was absorbed from the small intestine into the mesenteric lymphatics followed by the rapid esterification of M4 with fatty acids and its spreading to other organs in the body and excretion as bile. The administration of M4 prior to tumor injection abrogated the enhanced lung metastasis in the mice pretreated with 2-chloroadenosine more effectively than in those pretreated with anti-asialo GMl. Both EM1 and EM4 did not directly affect tumor growth in vitro, whereas EM1 promoted tumor cell lysis by lymphocytes, particularly non-adherent splenocytes, and EM4 stimulated splenic NK cells to become cytotoxic to tumor cells. Thus, the esterification of IBM with fatty acids potentiated the antitumor activity of parental IBM through delay of the clearance and through immunostimulation. These results suggest that the fatty acid conjugates of IBMs may be the real active principles of ginsenosides in the body.

  • PDF

Effects of dietary lysozyme supplementation on growth performance, nutrient digestibility, intestinal microbiota, and blood profiles of weanling pigs challenged with Escherichia coli

  • Park, Jae Hong;Sureshkumar, Shanmugam;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • 제63권3호
    • /
    • pp.501-509
    • /
    • 2021
  • The aim of this was evaluate the efficacy of lysozyme on growth performance, nutrient digestibility, excreta microflora population, and blood profiles of weanling pigs under Escherichia coli (E. coli) challenge. A total of 30 piglets weaned at 25 days, 7.46 kg body weight, were assigned to three dietary treatments, composed of five replications, two piglets per replication, for 7 days. The dietary treatment groups were negative control (NC; without antibiotics and lysozyme), positive control (PC; NC + antibiotics), lysozyme (NC + 0.1% lysozyme). All piglets were challenged orally with 6 ml suspension, containing E. coli K88 (2 × 109 CFU/mL). Dietary supplementation with lysozyme and PC resulted in no significant differences in average daily gain and gain to feed efficiency. Weanling pigs fed with E. coli challenge with lysozyme and PC treatments had significantly enhanced nutrient retentions of dry matter and energy (p < 0.05); however, there was a tendency to increase nitrogen digestibility. Furthermore, dietary inclusion of lysozyme and antibiotics treatment groups had a beneficial effect on excreta, ileal, and cecal of the fecal microbial population as decreased E. coli (p < 0.05) counts, without effects on lactobacillus counts. A significant effect were observed on a white blood cells, epinephrine and cortisol concentrations were reduced in piglets fed diets containing E. coli challenge with lysozyme and antibiotics supplementation comparison with the NC group. Therefore, the present data indicate that lysozyme in diet could ameliorate the experimental stress response induced by E. coli in piglets by decreasing intestinal E. coli, white blood cells and stress hormones and improving nutrient digestibility.

Current status of global pig production: an overview and research trends

  • Sung Woo Kim;Alexa Gormley;Ki Beom Jang;Marcos Elias Duarte
    • Animal Bioscience
    • /
    • 제37권4_spc호
    • /
    • pp.719-729
    • /
    • 2024
  • Global pig production has increased by 140% since the 1960s. The increase in global population, coupled with improving socioeconomic conditions of many countries has led to an increased consumption of meat globally, including pork. To keep up with demand and capitalize on economic opportunities, the countries of China, the United States (US), and the European Union (EU) have become the top 3 pork producers globally. China is of particular interest, as it is the both the largest country in pork production and pig numbers, as well as being the largest importer of pork from other countries. Globally, the efficiency of pork production has improved, in relation to the integration of pig production and the dramatic increase in research efforts in pig nutrition and production. Through integration, large producers can consolidate resources and maximize profits and efficiency. The increased research interest and efforts in pig production have given scientists and producers the opportunity to collaborate to adapt to challenges and identify possible solutions to issues brought on by a volatile global market. Intestinal health (23%), general nutrition and growth (23%), and amino acid nutrition (15%) were the top 3 areas (61%) leading research trends in pig nutrition and production. Major dietary interventions with feed additives evaluated include functional amino acids, feed enzymes, pre-/pro-/post-biotics, and phytobiotics with a common goal to improve the growth efficiency by enhancing nutrient utilization and intestinal health. With increasing global issues with environment, pig producers and the supporting scientists should continue their efforts to improve the production efficiency and to reduce the environmental footprint from pig production.

Dietary Bovine Colostrum Increases Villus Height and Decreases Small Intestine Weight in Early-weaned Pigs

  • King, M.R.;Morel, P.C.H.;Revell, D.K.;Pluske, J.R.;Birtles, M.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권4호
    • /
    • pp.567-573
    • /
    • 2008
  • This experiment examined the effect of dietary spray-dried bovine colostrum on intestinal histology and organ weights in early-weaned pigs. In a randomised complete block design, twelve 14-day-old weaner pigs were offered a diet containing either 5% spray-dried bovine colostrum or no colostrum (control). Diets were formulated to contain 14.8 MJ/kg DE, 1.26% available lysine and to meet or exceed requirements for other nutrients. Piglets were offered the diets for a period of 14 days. No effect of diet on growth rate or feed intake was observed (p>0.10). Small intestine weight was reduced by 12% in piglets consuming dietary bovine colostrum (p< 0.05). Villous height and crypt depth were increased and decreased, respectively, in the proximal jejunum, mid jejunum and distal ileum of pigs consuming dietary bovine colostrum (p<0.05). Mid-jejunal lamina propria $CD4^+$ and $CD8^+$ T lymphocyte density was increased by 28 and 37%, respectively, in piglets consuming dietary bovine colostrum (p<0.05). Diet did not affect thickness of tunica muscularis externa or tunica submucosa (p>0.10). Collectively, these results suggest a positive effect of dietary bovine colostrum on intestinal morphology and immune status in early-weaned pigs.

Effects of Dietary Glutamine and Glutamate Supplementation on Small Intestinal Structure, Active Absorption and DNA, RNA Concentrations in Skeletal Muscle Tissue of Weaned Piglets during d 28 to 42 of Age

  • Liu, Tao;Peng, Jian;Xiong, Yuanzhu;Zhou, Shiqi;Cheng, Xuehui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권2호
    • /
    • pp.238-242
    • /
    • 2002
  • Seventy-four piglets were used to investigate the effects of dietary glutamine (Gln) and glutamate (Glu) on the mucosal structure and active absorption of small intestinal, DNA and RNA concentrations of skeletal muscle tissue in piglets during d 28 to 42 of age. Postweaning piglets were fed for 14 d corn- and soybean meal-based diets supplemented with 0.0 or 1.0% L-Gln or L-Glu. On d 7 and 14 postweaning, pigs' small intestinal sections and longissimus dorsi were collected, at the same time, the D-xylose absorption test was conducted. The results suggested that in comparison to control piglets, jejunal atrophy during the first week postweaning was prevented by the glutamine and glutamate supplementation (1%) and the capability of small intestine to absorb Dxylose was improved. Furthermore the RNA concentration in skeletal muscle tissue was increased. These results provide an experimental basis for use of glutamine and glutamate on alleviating the weaning stresses and improving piglets' growth performance.

Biotransformation of Glycyrrhizin by Human Intestinal Bacteria and its Relation to Biological Activities

  • Kim, Dong-Hyun;Hong, Sung-Woon;Kim, Byung-Taek;Bae, Eun-Ah;Park, Hae-Young;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.172-173
    • /
    • 2000
  • The relationship between the metabolites of glycyrrhizin (18$\beta$-glycyrrhetinic acid-3-O--D-glu-curonopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucuronide, CL) and their biological activities was investigated. By human intestinal microflora, CL was metabolized to 18$\beta$-glycyrrhetinic acid (GA) as a main product and to 18$\beta$-glycyrrhetinic acid-3-O-$\beta$-D-glucuronide (GAMG) as a minor product. The former reaction was catalyzed by Eubacterium L-8 and the latter was by Streptococcus LJ-22. Among GL and its metabolites, GA and GAMG had more potent in vitro anti-platelet aggregation activity than GL. GA also showed the most potent cytotoxicity against tumor cell lines and the potent inhibitory activity on rotavirus infection as well as growth of Helicobacter pylori. GAMG, the minor metabolite of GL, was the sweetest.

  • PDF

닭의 괴사성 장염에 대한 병리학적 연구 (Pathological changes on naturally occuring necrotic enteritis in chicken)

  • 김홍집;강문일;정운익
    • 대한수의학회지
    • /
    • 제37권1호
    • /
    • pp.161-166
    • /
    • 1997
  • From January of 1991 to December of 1992, 42 chickens collected from 21 poultry farms and also diagnosed as necrotic enteritis(NE) was examined clinical signs, gross and histopathological findings. Main clinical signs were characterized by decreased appetite, mild to severe depression, reductance to move, ruffled feathers, greenish to yellow-browinish diarrhea sometimes including blood. As progressed, diseased chickens showed feces mixed with necrotic debris which detached from the intestinal mucosa and mostly resulted in the death. In chronic cases, there were dirty feathers around cloaca due to diarrhea and notably retarded growth. Principle gross lesions were usually confined to the jejunum and ileum, especially toward the lower part of Meckel's diverticulum. The part of small intestine was frequently distended with gas, and also showed mucosal congestion and hemorrhages with varying degrees. Sometimes, the intestinal mucosa was thickened, and also covered with fibronecrotic psuedomembrane. In addition, there were focal necrosis and severely multifocal ulcreation in the mucosa of small intestine. Major histopathological findings included villous necrosis and erosion of the small intestine covering with lots of bacterial colonies, inflammatory cell infiltration in the lamina propria, and dilatation and hyperplasia of crypts. Luminal exudate contained bacterial colonies, fibrin, erythrocytes, and desquamated epithelium. Thirteen(61.9%) out of 21 NE-occurring farms were complicated with intestinal coccidiosis.

  • PDF

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • 제38권1호
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Management and control of coccidiosis in poultry - A review

  • Rafiq Ahmad;Yu-Hsiang Yu;Kuo-Feng Hua;Wei-Jung Chen;Daniel Zaborski;Andrzej Dybus;Felix Shih-Hsiang Hsiao;Yeong-Hsiang Cheng
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.1-15
    • /
    • 2024
  • Poultry coccidiosis is an intestinal infection caused by an intracellular parasitic protozoan of the genus Eimeria. Coccidia-induced gastrointestinal inflammation results in large economic losses, hence finding methods to decrease its prevalence is critical for industry participants and academic researchers. It has been demonstrated that coccidiosis can be effectively controlled and managed by employing anticoccidial chemical compounds. However, as a result of their extensive use, anticoccidial drug resistance in Eimeria species has raised concerns. Phytochemical/herbal medicines (Artemisia annua, Bidens pilosa, and garlic) seem to be a promising strategy for preventing coccidiosis, in accordance with the "anticoccidial chemical-free" standards. The impact of herbal supplements on poultry coccidiosis is based on the reduction of oocyst output by preventing the proliferation and growth of Eimeria species in chicken gastrointestinal tissues and lowering intestinal permeability via increased epithelial turnover. This review provides a thorough up-to-date assessment of the state of the art and technologies in the prevention and treatment of coccidiosis in chickens, including the most used phytochemical medications, their mode of action, and the applicable legal framework in the European Union.