• Title/Summary/Keyword: Interval matrix

Search Result 169, Processing Time 0.021 seconds

Design optimization of vibration isolation system through minimization of vibration power flow

  • Xie, Shilin;Or, Siu Wing;Chan, Helen Lai Wa;Choy, Ping Kong;Liu, Peter Chou Kee
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.677-694
    • /
    • 2008
  • A vibration power minimization model is developed, based on the mobility matrix method, for a vibration isolation system consisting of a vibrating source placed on an elastic support structure through multiple resilient mounts. This model is applied to investigate the design optimization of an X-Y motion stage-based vibration isolation system used in semiconductor wire-bonding equipment. By varying the stiffness coefficients of the resilient mounts while constraining the dynamic displacement amplitudes of the X-Y motion stage, the total power flow from the X-Y motion stage (the vibrating source) to the equipment table (the elastic support structure) is minimized at each frequency interval in the concerned frequency range for different stiffnesses of the equipment table. The results show that when the equipment table is relatively flexible, the optimal design based on the proposed vibration power inimization model gives significantly little power flow than that obtained using a conventional vibration force minimization model at some critical frequencies. When the equipment table is rigid enough, both models provide almost the same predictions on the total power flow.

Multi-Stage Generation Allocation Game Considering Ramp-rate Constraints (경쟁적 전력시장에서 발전기 증감발률을 고려한 다중시간 발전량 배분 게임)

  • Park, Yong-Gi;Park, Jong-Bae;Roh, Jae-Hyung;Kim, Hyeong-Jung;Shin, Jung-Rin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.509-516
    • /
    • 2011
  • This paper studies a novel method to find the profit-maximizing Nash Equilibriums in allocating generation quantities with consideration of ramp-rates under competitive market environment. Each GenCo in a market participates in a game to maximize its profit through competitions and play a game with bidding strategies. In order to find the Nash equilibriums it is necessary to search the feasible combinations of GenCos' strategies which satisfy every participant's profit and no one wants various constraints. During the procedure to find Nash equilibriums, the payoff matrix can be simplified as eliminating the dominated strategies. in each time interval. Because of the ramp-rate, generator's physically or technically limits to increase or decrease outputs in its range, it can restrict the number of bidding strategies of each generator at the next stage. So in this paper, we found the Nash Equilibriums for multi-stage generation allocation game considering the ramp-rate limits of generators. In the case studies, we analyzed the generation allocation game for a 12-hour multi-stage and compared it with the results of dynamic economic dispatch. Both of the two cases were considered generator's ramp-rate effects.

TGFBI Promoter Methylation is Associated with Poor Prognosis in Lung Adenocarcinoma Patients

  • Seok, Yangki;Lee, Won Kee;Park, Jae Yong;Kim, Dong Sun
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.161-165
    • /
    • 2019
  • Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide and has high rates of metastasis. Transforming growth factor beta-inducible protein (TGFBI) is an extracellular matrix component involved in tumour growth and metastasis. However, the exact role of TGFBI in NSCLC remains controversial. Gene silencing via DNA methylation of the promoter region is common in lung tumorigenesis and could thus be used for the development of molecular biomarkers. We analysed the methylation status of the TGFBI promoter in 138 NSCLC specimens via methylation-specific PCR and evaluated the correlation between TGFBI methylation and patient survival. TGFBI promoter methylation was detected in 25 (18.1%) of the tumours and was demonstrated to be associated with gene silencing. We observed no statistical correlation between TGFBI methylation and clinicopathological characteristics. Univariate and multivariate analyses showed that TGFBI methylation is significantly associated with poor survival outcomes in adenocarcinoma cases (adjusted hazard ratio = 2.88, 95% confidence interval = 1.19-6.99, P = 0.019), but not in squamous cell cases. Our findings suggest that methylation in the TGFBI promoter may be associated with pathogenesis of NSCLC and can be used as a predictive marker for lung adenocarcinoma prognosis. Further large-scale studies are needed to confirm these findings.

Prototyping an embedded wireless sensor for monitoring reinforced concrete structures

  • Utepov, Yelbek;Khudaibergenov, Olzhas;Kabdush, Yerzhan;Kazkeev, Alizhan
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.95-102
    • /
    • 2019
  • Current article proposes a cheap prototype of an embedded wireless sensor to monitor concrete structures. The prototype can measure temperature and relative humidity concurrently at a controlled through smartphone time interval. It implements a maturity method to estimate in-place concrete strength, which is considered as an alternative for traditional shock impulse method and compression tests used in Kazakhstan. The prototype was tested and adequately performed in the laboratory and field conditions. Tests aimed to study the effect of internal and ambient temperature and relative humidity on the concrete strength gain. According to test results revealed that all parameters influence the strength gain to some extent. For a better understanding of how strongly parameters influence the strength as well as each other, proposed a multicolored cross-correlation matrix technique. The technique is based on the determination coefficients. It is able to show the value of significance of correlation, its positivity or negativity, as well as the degree of inter-influence of parameters. The prototype testing also recognized the inconvenience of Bluetooth control due to weakness of signal and inability to access several prototypes simultaneously. Therefore, further improvement of the prototype presume to include the replacement of Bluetooth by Narrow Band IoT standard.

Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD

  • Park, Ho Jin;Lee, Dong Hyuk;Jeon, Byoung Kyu;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1043-1050
    • /
    • 2018
  • For an efficient Monte Carlo (MC) burnup analysis, an accurate high-order depletion scheme to consider the nonlinear flux variation in a coarse burnup-step interval is crucial accompanied with an accurate depletion equation solver. In a Seoul National University MC code, McCARD, the high-order depletion schemes of the quadratic depletion method (QDM) and the linear extrapolation/quadratic interpolation (LEQI) method and a depletion equation solver by the Chebyshev rational approximation method (CRAM) have been newly implemented in addition to the existing constant extrapolation/backward extrapolation (CEBE) method using the matrix exponential method (MEM) solver with substeps. In this paper, the quadratic extrapolation/quadratic interpolation (QEQI) method is proposed as a new high-order depletion scheme. In order to examine the effectiveness of the newly-implemented depletion modules in McCARD, four problems in the VERA depletion benchmarks are solved by CEBE/MEM, CEBE/CRAM, LEQI/MEM, QEQI/MEM, and QDM for gadolinium isotopes. From the comparisons, it is shown that the QEQI/MEM predicts ${k_{inf}}^{\prime}s$ most accurately among the test cases. In addition, statistical uncertainty propagation analyses for a VERA pin cell problem are conducted by the sensitivity and uncertainty and the stochastic sampling methods.

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.

A statistical analysis of the fat mass repeated measures data using mixed model (혼합모형을 이용한 체지방 반복측정자료에 대한 통계적 분석)

  • Jo, Jinnam;Chang, Un Jae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.303-310
    • /
    • 2013
  • Forty two female students whose fat mass ratio was over 30% were participated in the experiment of fat mass loss of two treatments for 8 weeks. They kept diary for foods they ate every day, took a picture of the foods, transmitted the picture to the experimenter by the camera phone. Among those, 28 students took the picture by regular camera phone (Treatment A), and the other students used smart phone (Treatment B). Fat mass weight and its related variables had been measured repeatedly four times at an interval of two weeks during 8 weeks. It was shown from mixed model analysis of repeated measurements data that AR(1) covariance matrix was selected as the optimal covariance matrix pattern. The correlation between two successive times is highly correlated as 0.838. Based upon the AR(1) covariance matrix structure, the students using smart phones were somewhat more effective in losing fat mass weight than the students using regular camera phones. The time effect was highly significant, but the treatment-time interaction effect was insignificant. The baseline effect and total cholesterol were found to be significant, but the calories with taking foods were somewhat significant, but the waist to hip ratio was found to be insignificant.

A Nationwide Analysis Evaluating the Safety of Using Acellular Dermal Matrix with Tissue Expander-Based Breast Reconstruction

  • Jessica Luo;Whitney D. Moss;Giovanna R. Pires;Irfan A. Rhemtulla;Megan Rosales;Gregory J. Stoddard;Jayant P. Agarwal;Alvin C. Kwok
    • Archives of Plastic Surgery
    • /
    • v.49 no.6
    • /
    • pp.716-723
    • /
    • 2022
  • Background In March 2021, the United States Food and Drug Administration (FDA) safety communication cautioned against the use of acellular dermal matrix (ADM) products in breast reconstruction and reiterated that the FDA does not approve ADM use in breast surgery. This study aims to assess the safety of ADM use in breast reconstruction. Methods Women who underwent ADM and non-ADM assisted tissue expander (TE)-based breast reconstruction were identified using the National Surgical Quality Improvement Program database (2012-2019). Trends of ADM use over time, and 30-day outcomes of surgical site infection (SSI), dehiscence, and unplanned reoperation were assessed. Results Of the 49,049 TE-based breast reconstructive cases, 42.4% were ADM assisted and 57.6% non-ADM assisted. From 2012 to 2019, the use of ADM increased from 26.1 to 55.6% (relative risk [RR] =1.10; p < 0.01). Higher rates of SSI (3.9 vs. 3.4%; p = 0.003) and reoperation (7.4 vs. 6.0%; p < 0.001) were seen in the ADM cohort. There was no significant difference seen in dehiscence rates (0.7 vs. 0.7%; p = 0.73). The most common reoperation within 30 days for the ADM group (17.6%) was removal of TE without insertion of implant (current procedural terminology: 11,971). ADM-assisted breast reconstruction was associated with increased relative risk of SSI by 10% (RR = 1.10, confidence interval [CI]: 1.01-1.21; p = 0.03) and reoperation by 15% (RR = 1.15, CI: 1.08-1.23; p < 0.001). Conclusions ADM-assisted breast reconstruction more than doubled from 2012 to 2019. There are statistically higher complication rates of SSI (0.5%) and reoperation (1.4%) with ADM use in TE-based breast reconstruction, suggesting that reconstruction without ADM is safe when comparing immediate postoperative outcomes.

Degradation Evaluation of 1Cr-0.5Mo Steel using Barkhausen Noise (바크하우젠 노이즈에 의한 1Cr-0.5Mo 강의 열화도 평가)

  • Kim, Min-Gi;Park, Jong-Seo;Lee, Yun-Hee;Kim, Cheol-Gi;Ryu, Kwon-Sang
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.136-140
    • /
    • 2011
  • Mechanical properties of degraded materials must be measured for evaluating the integrity of the facilities operating at high temperature. In fact it is complicated to obtain the different degraded specimens from an operating facility. Specimens of 1Cr-0.5Mo steel prepared by the isothermal heat treatment at $700^{\circ}C$ were tested, which has been widely used as tubes for heat exchangers and as plates for pressure vessels. The magnetic properties and Rockwell hardness (HRB) were measured at room temperature. The peak interval of Barkhausen noise envelope (PIBNE), coercivity, and hardness decreased with the increase of degradation. The magnetic and mechanical softening of matrix is likely to govern the properties of the specimen more than the hardening of grain boundary by carbide precipitations. The degradation of test material may be determined by the linear correlation of PIBNE and HRB. Degradation of 1Cr-0.5Mo steel could well be nondestructively evaluated by PIBNE measured with surface type probe.

Microstructure and Hardness of Yb:YAG Disc Laser Surface Overlap Melted Cold Die Steel, STD11 (Yb:YAG 디스크 레이저로 표면 오버랩 용융된 냉간금형강, STD11의 미세조직과 경도)

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yun, Jung Gil;Oh, Myeong-Hwan;Kim, Byung Min;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Laser surface Melting Process is getting hardening layer that has enough depth of hardening layer as well as no defects by melting surface of substrate. This study used CW(Continuous Wave) Yb:YAG and STD11. Laser beam speed, power and beam interval are fixed at 70mm/sec, 2.8kW and 800um respectively. Hardness in the weld zone are equal to 400Hv regardless of melting zone, remelting zone overlapped by next beam and HAZ. Similarly, microstructures in all weld zone consist of dendrite structure that arm spacing is $3{\sim}4{\mu}m$, matrix is ${\gamma}$(Austenite) and dendrite boundary consists of ${\gamma}$ and $M_7C_3$ of eutectic phase. This microstructure crystallizes from liquid to ${\gamma}$ of primary crystal and residual liquid forms ${\gamma}$ and $M_7C_3$ of eutectic phase by eutectic reaction at $1266^{\circ}C$. After solidification is complete, primary crystal and eutectic phase remain at room temperature without phase transformation by quenching. On the other hand, microstructures of substrate consist of ferrite, fine $M_{23}C_6$ and coarse $M_7C_3$ that have 210Hv. Microstructures in the HAZ consist of fine $M_{23}C_6$ and coarse $M_7C_3$ like substrate. But, $M_{23}C_6$ increases and matrix was changed from ferrite to bainite that has hardness above 400Hv. Partial Melted Zone is formed between melting zone and HAZ. Partial Melted Zone near the melting zone consists of ${\gamma}$, $M_7C_3$ and martensite and Partial Melted Zone near the HAZ consists of eutectic phase around ${\gamma}$ and $M_7C_3$. Hardness is maximum 557Hv in the partial melted zone.