• Title/Summary/Keyword: Intersection Validation

Search Result 25, Processing Time 0.02 seconds

An Intersection Validation and Interference Elimination Algorithm between Weapon Trajectories in Multi-target and Multi-weapon Environments (다표적-다무장 환경에서 무장 궤적 간 교차 검증 및 간섭 배제 알고리즘)

  • Yoon, Moonhyung;Park, Junho;Yi, JeongHoon;Kim, Kapsoo;Koo, BongJoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.614-622
    • /
    • 2018
  • As multiple weapons are fired simultaneously in multi-target and multi-weapon environments, a possibility always exists in the collision occurred by the intersection between weapon trajectories. The collision between weapons not only hinders the rapid reaction but also causes the loss of the asset of weapons of friendly force to weaken the responsive power against the threat by an enemy. In this paper, we propose an intersection validation and interference elimination algorithm between weapon trajectories in multi-target and multi-weapon environments. The core points of our algorithm are to confirm the possible interference through the analysis on the intersections between weapon trajectories and to eliminate the mutual interference. To show the superiority of our algorithm, we implement the evaluation and verification of performances through the simulation and visualization of our algorithm. Our experimental results show that the proposed algorithm performs effectively the interference elimination regardless of the number of targets and weapon groups by showing that no cross point exists.

Three-Dimensional Positioning Using EROS A Stereo Pairs

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.606-608
    • /
    • 2003
  • This paper investigates the accuracy of three-dimensional positioning for EROS A stereo pairs when different numbers of ground control points are employed. The major works of the proposed schemes include: (1) initialization of orientation parameters (2) preliminary orbit fitting, (3) orbit refinement using the least squares filtering technique, and (4) space intersection. The experiment includes validation of positioning accuracy for an EROS A in-track stereo pair when different number of check points are employed.

  • PDF

Measurement of Effectiveness of Signal Optimized Roundabout (회전교차로의 접근로 신호최적화를 통한 도입효과 분석)

  • Eom, Jeong Eun;Jung, Hee Jin;Bae, Sang Hoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2015
  • PURPOSES : Although signalized intersections have been considered the best way to control traffic volume in urban areas for several decades, roundabouts are currently being discussed as an alternative way to control traffic volume, especially when traffic is light. Because a roundabout's efficiency depends on the load geometry as well as the traffic volume, design guidelines for roundabouts are recommended only if the incoming traffic volume is very low. It is rare to substitute a roundabout for an existing signalized intersection in urban areas. This study aims to estimate the benefits from the transformation of an existing signalized intersection into a roundabout in an urban area. When there is a more moderate volume of traffic, roundabouts can be effectively used by optimizing signals located at an approaching roadway. METHODS : The methodologies of this paper are as follows: First, a signalized intersection was analyzed to determine the traffic characteristics. Second, the signalized intersection was transformed into a roundabout using VISSIM microscopic traffic simulation. Then, we estimated and analyzed the effects and the performance of the roundabout. In addition, we adjusted a method to improve the benefits of the transformation via the optimization of signals located at an approaching road to control the incoming traffic volume. RESULTS : The results of this research are as follows: The signal-optimized roundabout improved delays compared with the signalized intersection during the morning peak hour, non-peak hour, and evening peak hour by 1.78%, 12.45%, and 12.72%, respectively. CONCLUSIONS : According to the simulation results of each scenarios, the signal-optimized roundabout had less delay time than the signalized intersection. If optimized signal control algorithms are installed in roundabouts in the future, this will lead to more efficient traffic management.

A Study on the Method for Three-dimensional Geo-positioning Using Heterogeneous Satellite Stereo Images (이종위성 스테레오 영상의 3차원 위치 결정 방법 연구)

  • Jaehoon, Jeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • This paper suggests an intersection method to improve the accuracy of three-dimensional position from heterogeneous satellite stereo images, and addresses validation of the suggested method following the experimental results. The three-dimensional position is achieved by determining an intersection point of two rays that have been precisely adjusted through the sensor orientation. In case of conventional homogeneous satellite stereo images, the intersection point is generally determined as a mid-point of the shortest line that links two rays in at least square fashion. In this paper, a refined method, which determines the intersection point upon the ray adjusted at the higher resolution image, was used to improve the positioning accuracy of heterogeneous satellite images. Those heterogeneous satellite stereo pairs were constituted using two KOMPSAT-2 and QuickBird images of covering the same area. Also, the positioning results were visually compared in between the conventional intersection and the refined intersection, while the quantitative analysis was performed. The results demonstrated that the potential of refined intersection improved the positioning accuracy of heterogeneous satellite stereo pairs; especially, with a weak geometry of the heterogeneous satellite stereo, the greater effects on the accuracy improvement.

Analysis of Intersection Signal Violation Accident Using Simulation (시뮬레이션을 이용한 교차로 신호위반 사고 해석)

  • Han, Chang-Pyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.424-430
    • /
    • 2021
  • Determining the cause of a traffic signal violation is difficult if the drivers' claims are contradictory. In this study, the process of identifying signal violations using a simulation was presented based on cases. First, statements from the driver or witness whose cause of the signal violation is unclear were excluded. Second, the final position, final location, damaged area, steering status, braking status, and road surface traces of the vehicle were collected. The impact point was investigated from the stop line. Third, simulation data were modified and entered until the collision situation of the accident vehicle and the final stop position were met. Fourth, if the simulation results were consistent with the crash situation, the facts were verified by cross-validation to conform to the driver's statement. The results of the simulation showed that the Lexus entered the left turn signal in the intersection at approximately 55 km/h. In comparison, the Sonata driver saw the vehicle straight ahead at the intersection, entered the 72 km/h intersection, and collided with the Lexus. Therefore, the Sonata was identified as a signal violation, and the claims of the Sonata driver, witnesses, and police were contradictory.

Capacity Estimation Models for Work-zones Under Traffic Signal Influence and the Empirical Validation (신호영향권 하 도로공사구간에서의 용량산정모형 개발과 실증)

  • Shin, Chi-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This paper focuses on the development of analytical models for estimating the changes in saturation flow rates (SFR) at the stop-lines of a signalized intersection due to the existence of nearby work-zones, and thereby calculating the prevailing capacity values for specific lane groups. Major changes were incorporated in the logics of previous models and significant revisions have been made to secure the accuracy and simplicity. Furthermore, much attention was paid to model validation by making comparisons to both extensive simulation results and empirical data from various sites. It was found that SFRs are highly sensitive to the location of work-zones, the distance to each work-zone from the stop-line of a concerned approach, the number of lanes open and closed, and the effective green time. Using such geometric and operating conditions that constitute work-zone environment, the proposed models successfully estimated SFR values with a miniscule margin of error.

Application of Mask R-CNN Algorithm to Detect Cracks in Concrete Structure (콘크리트 구조체 균열 탐지에 대한 Mask R-CNN 알고리즘 적용성 평가)

  • Bae, Byongkyu;Choi, Yongjin;Yun, Kangho;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • Inspecting cracks to determine a structure's condition is crucial for accurate safety diagnosis. However, visual crack inspection methods can be subjective and are dependent on field conditions, thereby resulting in low reliability. To address this issue, this study automates the detection of concrete cracks in image data using ResNet, FPN, and the Mask R-CNN components as the backbone, neck, and head of a convolutional neural network. The performance of the proposed model is analyzed using the intersection over the union (IoU). The experimental dataset contained 1,203 images divided into training (70%), validation (20%), and testing (10%) sets. The model achieved an IoU value of 95.83% for testing, and there were no cases where the crack was not detected. These findings demonstrate that the proposed model realized highly accurate detection of concrete cracks in image data.

A Study on Relevant Range of Vertical vertical grade at Urban Intersections (도시부 평면교차로의 종단경사 적정범위 도출 연구)

  • Yoon, Byoung-Jo;Jung, Jae-Hoon;Kim, Jin-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.187-192
    • /
    • 2015
  • In general, design of urban intersections are fundamentally different from rural intersections, but current urban intersection design has been appled to rural standards. This study has suggested the design standard for urban intersection grades based on the existing literature, field investigating and comparative analysis. Moreover, this study analyzes and compares the differences between urban and rural intersections, and intersections have been derived by appropriate design standards after reviewing the domestic and international grades design criteria. Site survey was performed to validate the derived design criteria by analyzing statistically to establish the design standards. Results were produced for the intersection portion grade standards by comparing the number of instructions which produced appropriate slope degree from 2.5% to 3% in normal condition and slope can be extended to 5% in some critical cases. In-situ investigation was performed to validate the produced data where slope was found from 0.0~8.6%. Additional data of accident analysis were also collected for the validation of the suggested data and correlation analysis was performed using the SPSS tool. Data were analyzed statistically using 95% significance level for vehicle-to-vehicle collided, head-on collision accident rates, where accident rates significantly correlated with the grade. Therefore, appropriate grade at the intersection should be designed and applied in order to reduce the number of accidents at the intersection. Finally, appropriate grades for urban intersections are suggested from 1-3% for normal cases and grades could extend up to 5% for unavoidable cases where extra care must be taken when designing.

Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis (CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증)

  • Lee Chung-Sub;Lim Dong-Wook;Noh Si-Hyeong;Kim Tae-Hoon;Ko Yousun;Kim Kyung Won;Jeong Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2023
  • Sarcopenia is not well known enough to be classified as a disease in 2021 in Korea, but it is recognized as a social problem in developed countries that have entered an aging society. The diagnosis of sarcopenia follows the international standard guidelines presented by the European Working Group for Sarcopenia in Older People (EWGSOP) and the d Asian Working Group for Sarcopenia (AWGS). Recently, it is recommended to evaluate muscle function by using physical performance evaluation, walking speed measurement, and standing test in addition to absolute muscle mass as a diagnostic method. As a representative method for measuring muscle mass, the body composition analysis method using DEXA has been formally implemented in clinical practice. In addition, various studies for measuring muscle mass using abdominal images of MRI or CT are being actively conducted. In this paper, we develop an AI image segmentation model based on abdominal images of CT with a relatively short imaging time for the diagnosis of sarcopenia and describe the multicenter validation. We developed an artificial intelligence model using U-Net that can automatically segment muscle, subcutaneous fat, and visceral fat by selecting the L3 region from the CT image. Also, to evaluate the performance of the model, internal verification was performed by calculating the intersection over union (IOU) of the partitioned area, and the results of external verification using data from other hospitals are shown. Based on the verification results, we tried to review and supplement the problems and solutions.

A Fast Integer Ambiguity Resolution Method For Precise Positioning On- The-Fly (OTF 정밀측위를 위한 신속한 미지정수 결정방법)

  • 이대규;성태경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.458-463
    • /
    • 2004
  • This paper presents a fast IA(integer ambiguity) resolution method that determines the IA within short epochs with guaranteed reliability. Based on the fact that the search volume and the cost function are influenced by the selection of primary IAs in the plane intersection method, an IA resolution method is proposed that evaluates IA candidates repeatedly in an epoch with different combinations of primary IAs. In order to guarantee the reliability of the resolved IA with a certain probability, an inequality condition for selecting differencing operator is derived. Experiment results show that the proposed method consistently provides the true IA estimates within short time.