• Title/Summary/Keyword: Interrupting Current

Search Result 77, Processing Time 0.026 seconds

Implementing a Dielectric Recovery Strength Measuring System for Molded Case Circuit Breakers

  • Cho, Young-Maan;Rhee, Jae-ho;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1752-1758
    • /
    • 2018
  • In a low-voltage distribution system, the molded case circuit breaker (MCCB) is a widely used device to protect loads by interrupting over-current; however the hot gas generated from the arc discharge in the interrupting process depletes the dielectric recovery strength between electrodes and leads to re-ignition after current-zero. Even though the circuit breaker is ordinarily tripped and successfully interrupts the over-current, the re-ignition causes the over-current to flow to the load again, which carries over the failure interruption. Therefore, it is necessary to understand the dielectric recovery process and the dielectric recovery voltage of the MCCB. To determine these characteristics, a measuring system comprised of the experimental circuit and source is implemented to apply controllable recovery voltage and over-current. By changing the controllable recovery voltage, in this work, re-ignition is driven repeatedly to obtain the dielectric recovery voltage V-t curve, which is used to analyze the dielectric recovery strength of the MCCB. A measuring system and an evaluation technique for the dielectric recovery strength of the MCCB are described. By using this system and method, the measurement to find out the dielectric recovery characteristics after current-zero for ready-made products is done and it is confirmed that which internal structure of the MCCB affects the dielectric recovery characteristics.

A Study on the Decreasing Method of Secondary Arc Current on Single Phase Reclosing (단상 재폐로시 2차아아크 전류의 감소방법에 관한 연구)

  • 김준현
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.59-65
    • /
    • 1977
  • A study on the decreasing method of secondary arc current on single phase reclosing. One of the major problem in case of using the single phase reclosing scheme for long distance UHV transmission line is the time required to deionize secondary arc current. This paper descritbes the way of inducing the formular of secondary arc current originated at the times of opening and closing the ground interrupting switch. The result was investigated by the method of numerical analysis and proved that the secondary arc current was decreasing sufficiently. Application of this method proposed by the authod makes it possible to deduce the dead time and to improve success-rate of reclosing.

  • PDF

A Study on Measurement Technique of Insulation Resistance for Non-interrupting Inspection Using Non-contact Voltage Phase Detection Technology (비접촉 전압위상 검출 기술을 이용한 무정전 절연저항 측정 방법에 관한 연구)

  • Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Dong-Woo;Lim, Young-Bae;Choi, Dong-Hwan;Kim, Yong-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1106-1112
    • /
    • 2018
  • In this paper, measurement techniques are presented to test the performance of insulation without interruption if it is difficult to measure insulation resistance. Especially, non-contact voltage phase detection techniques have been developed that can be applied in environments where it is difficult to find voltage measurement locations such as component receptors. The performance verification of the non-interrupting insulation resistance measuring devices has been tested against existing products using standard calibration equipment and test jigs. The validation confirmed performance within 2 % for direct contact type and within 10 % for non-contact type. In addition, the procedure to make continuous insulation test using the equipment was proposed.

A Study on the Development of 25.8kV 25kA Gas Circuit Breaker Using Thermal-Expansion Principle(II) (25.8kV 25kA 열팽창분사식 가스차단기 개발에 관한 연구(II) - 팽창실 용적이 차단성능에 미치는 영향 -)

  • Song, K.D.;Park, K.Y.;Shin, Y.J.;Kim, K.S.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.80-82
    • /
    • 1996
  • This paper deals with the effects of the volume of thermal expansion chamber on the interrupting performance in thermal expansion type 25.8kV 25kA gas circuit breaker. Model interrupters with 5 type thermal expansion chamber were designed and manufactured. Short-circuit tests were carried out for those model interrupters with 25kA breaking current. Pressure rise in the expansion chamber were measured and compared with the calculated one which was obtained from a self-developed program in our team. The analysis on the interrupting performance of each model interrupter has been done on the base of the short-circuit test results.

  • PDF

A Study on Improving Arc Quenching Performance of MCCB by FEM (유한요소법을 이용한 배선용 차단기의 아크소호 성능향상에 관한 연구)

  • Kim, Kil-Sou;Lim, Kee-Joe;Kang, Seong-Hwa;Cho, Hyun-Kil;Lee, Gang-Won;Park, Jung-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.51-54
    • /
    • 2001
  • This Paper is described basic principles of arc quenching in Molded Case Circuit Breaker. We analyzed magnetic blowout forces acting on the arc in contact system when circuit breakers interrupt fault currents in different three models by 3-D FEM(Finite Element Method). The interrupting time simulated is compared with that of short circuit tests. The results of this study derive valid of the simulation method and present the techniques to improve arc quenching performance.

  • PDF

The Effects of Design Parameter to Interrupt Optimally for High Voltage CL Fuse (고압한류퓨즈의 최적 차단을 위한 설계변수의 영향)

  • Lee, Se-Hyeon;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.185-191
    • /
    • 1999
  • The fuse used in the high voltage distribution line often fails due to the active ionization caused by the strong electric field at fuse terminal. To suppress the ionization at the high voltage and high capacity current limiting fuse, the particle size and compactness of silica sand, the design, length, notch number and material of element, the diameter and length of fuse body must be considered carefully. However, these are not many proper which is treated with the inherent interrupting characteristics from many parameters at present. Because of these reasons, time and effort are needed to develop the new type fuse by the fuse designers in relation with the inherent characteristics from each of parameters. In this paper we choose 7 parameters with weight value based on study and experimentation and analyzed the characteristics of arcing period. In addition, we proposed the experimental method to experimentation and analyzed the characteristics of arcing period. In addition, we proposed the experimental method to extract the optimal design parameters with minimal effort as related the mutual effect from each of the parameters.

  • PDF

Development of Control Algorithm and Detection of the Small Leakage Current (미소 누전전류 검출 및 차단제어기 설계)

  • 반기종;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.161-165
    • /
    • 2004
  • In this paper, we have designed the ground faults detection and interrupting controller at normal condition of AC 120v to 240v rating voltage. Ground faults in electrical network have the characteristics of low current, 60㎐ frequency to 2㎑frequency. The load condition are no load and 20A load. The trip level of the controller is 6㎃ with ground faults. The Controller algorithm is implemented using pic16c71 microprocessor.

High-Speed Fault Current Detector for Superconducting Fault Current Limiter (초전도 한류기용 고속 고장전류 검출장치)

  • 이우영;박경엽;송기동;이병윤
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.300-302
    • /
    • 2002
  • In this paper the high-speed fault current detector for superconducting fault current limiter is described. Detecting and interrupting the fault currents as quickly as possible is required in order not to exceed the thermal capacity of superconducting fault current limiter. A detecting method of an instantaneous fault current magnitude is adopted in the equipment described in this paper and a current signal through an analog/digital(A/D) converter would be compared with the reference in the digital signal processor(DSP). Around 20ms has elapsed for detecting the fault current. It is necessary to establish the appropriate trade-off between the reliability and detection speed.

  • PDF

Empirical Modeling on the Breaking Characteristics of Power Current Limited Fuse (전력용 백업퓨우즈 차단특성 모델링)

  • Lee Sei-Hyun;Lee Bvung-Sung;Han Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.391-396
    • /
    • 2005
  • In this paper the modeling of interrupting characteristics of a high voltage current limiting fuse to be used in a power distribution system is introduced. In order to reduce the level of energy which can be absorbed by equipment during fault current flow, a high voltage current limiting fuse can generate a high voltage at the fuse terminals. Consequently it is necessary to model and analyze precisely the voltage and current variation during a CL fuse action. The characteristics of CL fuse operation modeled by electrical components have been performed with less than 6 [$\%$] errors. So the fuse designer or manufacturer can estimate the characteristics of CL fuse operation by using this modeling. The Electro Magnetic Transient Program (EMTP) is used to develop the modeling.

Three-phase Making Test Method for Common Type Circuit Breaker

  • Ryu, Jung-Hyeon;Choi, Ike-Sun;Kim, Kern-Joong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.778-783
    • /
    • 2012
  • The synthetic short-circuit making test to adequately stress the circuit breaker has been specified as the mandatory test duty in the IEC 62271-100. The purpose of this test is to give the maximum pre-arcing energy during making operation. And this requires the making operation with symmetrical short-circuit current that is established when the breakdown between contact gap occurs near the crest of the applied voltage. Also, if the interrupting chamber of circuit breakers is designed as the type of common enclosure or the operation is made by the gang operated mechanism that three-phase contacts are operated by one common mechanism, three-phase synthetic making test is basically required. Therefore, several testing laboratories have developed and proposed their own test circuits to properly evaluate the breaker performance. With these technical backgrounds, we have developed the new alternative three-phase making circuit.