• Title/Summary/Keyword: Interrogation Area

Search Result 8, Processing Time 0.053 seconds

Error Analysis of Flow Velocity Measured through Granular PIV Based on Interrogation Area, Frame Per Second, and Video Resolution (상관 영역과 초당 촬영 수와 해상도에 따른 Granular PIV에서의 유동 속도의 오차 분석)

  • Choi, Jongeun;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.58-65
    • /
    • 2021
  • Research on general particle image velocimetry (PIV) has been conducted extensively, but studies on granular PIV are relatively insufficient. In addition, the parameters used for analyzing granular PIV need to be optimized. In this study, we analyzed the error of velocity measurements based on the interrogation area (64-192 pixel), frame per second (30-120 FPS), and video resolution [ultrahigh definition (UHD) and high definition (HD)] within the velocity range typically measured in hoppers. The estimated errors of the granular PIV were below 5%, which is generally acceptable. However, considering the data reliability, the flow velocity in the hopper could be measured with less than 5% error at 120 FPS or higher in the HD resolution and 30 FPS or higher in the UHD resolution.

Error Analysis of Image Velocimetry According to the Variation of the Interrogation Area (상관영역 크기 변화에 따른 영상유속계의 오차 분석)

  • Kim, Seojun;Yu, Kwonkyu;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.821-831
    • /
    • 2013
  • Recently image velocimetries, including particle image velocimetry (PIV) and surface image velocimetry (SIV), are often used to measure flow velocities in laboratories and rivers. The most difficult point in using image velocimetries may be how to determine the sizes of the interrogation areas and the measurement uncertainties. Especially, it is a little hard for unskilled users to use these instruments, since any standardized measuring techniques or measurement uncertainties are not well evaluated. Sometimes the user's skill and understanding on the instruments may make a wide gap between velocity measurement results. The present study aims to evaluate image velocimetry's uncertainties due to the changes in the sizes of interrogation areas and searching areas with the error analyses. For the purpose, we generated 12 series of artificial images with known velocity fields and various numbers and sizes of particles. The analysis results showed that the accuracy of velocity measurements of the image velocimetry was significantly affected by the change of the size of interrogation area. Generally speaking, the error was reduced as the size of interrogation areas became small. For the same sizes of interrogation areas, the larger particle sizes and the larger number of particles resulted smaller errors. Especially, the errors of the image velocimetries were more affected by the number of particles rather than the sizes of them. As the sizes of interrogation areas were increased, the differences between the maximum and the minimum errors seemed to be reduced. For the size of the interrogation area whose average errors were less than 5%, the differences between the maximum and the minimum errors seemed a little large. For the case, in other words, the uncertainty of the velocity measurements of the image velocimetry was large. In the viewpoint of the particle density, the size of the interrogation area was small for large particle density cases. For the cases of large number of particle and small particle density, however, the minimum size of interrogation area became smaller.

An Interrogator for Active Acquisition of Airspace in Active Multilateration (능동적 공역확보를 위한 다변측정 감시시스템용 질문기)

  • Koh, Young-Mok;Kim, Yong-Hak;Kim, Su-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2017
  • This paper is concerned with an interrogator capable of constructing a interrogation scenario for acquiring active airspace to the intruding aircraft into the surveillance area of the MLAT system. In the MLAT system, the interrogator is an important device used to carry out the interrogation towards the aircraft within the surveillance airspace in the appropriate surveillance scenario. Unlike a conventional SSR's interrogation methods that interrogate for airplanes flying within a certain range, the MLAT system requires a interrogation system that can actively interrogate from remote to near range, or according to operational scenarios, for aircraft intruding into the surveillance range. The interrogator implemented in this paper can be used for interrogating and monitoring aircraft within each surveillance airspace using whisper-shout algorithm according to varying output power based on the actual operation distance.

A Study of the Velocity Distribution and Vorticity Measurement in the Pump Sump Using PIV (PIV를 이용한 흡수조 내 유속분포 및 와류강도 측정에 대한 연구)

  • Byeon, Hyun Hyuk;Kim, Seo Jun;Yoon, Byung Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.145-156
    • /
    • 2020
  • The climate change occurring all over the world increases the risk, specially in urban area, Accordingly, rainwater pumping station expansion is required than before. In order to increase the efficiency of the rainwater pumping station, the analysis of flow characteristics in the pump sump is needed for vortex control. Many efforts have been made to illuminate the vortex behavior using PIV, but any reliable results have not been obtained yet, because of the limitations in image capturing and dependency of measured velocity values on the interrogation area and time interval used for velocity calculation. In this study, therefore, experiments were carried out to find out the limitation of PIV and estimate the validation of the velocity values associated with the analysis parameters such as interrogation area, time interval, grid size. For the experimental condition used in this study, the limitation of PIV and the effects of parameters on the velocity estimation are presented.

Sub-pixel Evaluation with Frequency Response Analysis

  • OKAMOTO Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.14-22
    • /
    • 2001
  • The frequency responses on the sub-pixel evaluation technique were investigated using the Monte-calro Simulation technique. The frequency response by the FFT based cross-correlation gives very good results, however, the gain loss does exist for the small displacement, (less than 0.5 pixel). While, the no gain loss is observed in the Direct Cross-correlation, however, the sub-pixel accuracy was limited to be about 0.1 pixel, i.e., it could not detect the small displacement. To detect the higher accurate sub-pixel displacement, the gradient based technique is the best. For the small interrogation area (e.g., 4x4), only the gradient technique can detect the small displacement correctly.

  • PDF

Simultaneous Measurement of Fluid Velocity and Particle Velocity in a Particle-Containing Fluid Flow (입자가 포함된 유동장에서 유체속도와 입자속도의 동시 측정기법)

  • Jin Dong-Xu;Lee Dae-Young;Lee Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.355-363
    • /
    • 2005
  • A novel method for simultaneously measuring the fluid velocity and the large particle velocity in a particle-containing fluid flow is developed in this study. In this method, the fluid velocity and the large particle velocity are measured by PIV and PTV, respectively. The PIV and PTV images are obtained from the same flow images. Since a PIV result represents the average displacement of all particles in an interrogation area, it will include an error caused by the relative displacement between the large particles and the fluid. In order to reduce the false influence of large particles on the PIV calculation, the mean brightness of small PIV particle images is substituted to the locations of large particles in the PIV images. The simulation results showed that the new method significantly reduces the PIV error caused by the large particles even at the case where the large particles occupy area fraction as large as $20\%$ of the full image.

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF

Performance Analysis of RFID Interference Suppression System Based on the Gold Code (골드 코드 기반의 RFID 간섭제거 시스템 성능분석)

  • khadka, Grishma;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1491-1497
    • /
    • 2013
  • Radio frequency identification (RFID) is an important and essential components of ubiquitous computing, with the development of wireless communication technologies and mobile computing environment. Recently, RFID becomes the mainstream application that helps fast handling and uniquely identifying the physical objects. It utilizes the electromagnetic energy for data transmission from a tag to a reader in the presence of arbitrary interference and noise. In order to employ the portable mobile RFID reader, a tag-collision problem between two or more adjacent tags should be considered. In this paper, we present the operation of RFID system in which numerous tags are present in the interrogation zone of a single reader at the same time. Since there may exist a number of tagged objects in the narrow area, multiple RFID tags may interfere each other, caused to degrade the data reliability and efficiency of the RFID system. In order to suppress interference signals from multiple neighboring tags, we present an application of Gold code for RFID communication system, which uses spread spectrum technique. In this RFID system, data bits are spreaded in each tags with the unique Gold code and the spreaded data bits are despreaded in the reader with the same Gold code. The performance analysis of the considered RFID anti-collision system is illustrated via computer simulation examples.