• Title/Summary/Keyword: Internet store

Search Result 521, Processing Time 0.024 seconds

A Real-Time Stock Market Prediction Using Knowledge Accumulation (지식 누적을 이용한 실시간 주식시장 예측)

  • Kim, Jin-Hwa;Hong, Kwang-Hun;Min, Jin-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.109-130
    • /
    • 2011
  • One of the major problems in the area of data mining is the size of the data, as most data set has huge volume these days. Streams of data are normally accumulated into data storages or databases. Transactions in internet, mobile devices and ubiquitous environment produce streams of data continuously. Some data set are just buried un-used inside huge data storage due to its huge size. Some data set is quickly lost as soon as it is created as it is not saved due to many reasons. How to use this large size data and to use data on stream efficiently are challenging questions in the study of data mining. Stream data is a data set that is accumulated to the data storage from a data source continuously. The size of this data set, in many cases, becomes increasingly large over time. To mine information from this massive data, it takes too many resources such as storage, money and time. These unique characteristics of the stream data make it difficult and expensive to store all the stream data sets accumulated over time. Otherwise, if one uses only recent or partial of data to mine information or pattern, there can be losses of valuable information, which can be useful. To avoid these problems, this study suggests a method efficiently accumulates information or patterns in the form of rule set over time. A rule set is mined from a data set in stream and this rule set is accumulated into a master rule set storage, which is also a model for real-time decision making. One of the main advantages of this method is that it takes much smaller storage space compared to the traditional method, which saves the whole data set. Another advantage of using this method is that the accumulated rule set is used as a prediction model. Prompt response to the request from users is possible anytime as the rule set is ready anytime to be used to make decisions. This makes real-time decision making possible, which is the greatest advantage of this method. Based on theories of ensemble approaches, combination of many different models can produce better prediction model in performance. The consolidated rule set actually covers all the data set while the traditional sampling approach only covers part of the whole data set. This study uses a stock market data that has a heterogeneous data set as the characteristic of data varies over time. The indexes in stock market data can fluctuate in different situations whenever there is an event influencing the stock market index. Therefore the variance of the values in each variable is large compared to that of the homogeneous data set. Prediction with heterogeneous data set is naturally much more difficult, compared to that of homogeneous data set as it is more difficult to predict in unpredictable situation. This study tests two general mining approaches and compare prediction performances of these two suggested methods with the method we suggest in this study. The first approach is inducing a rule set from the recent data set to predict new data set. The seocnd one is inducing a rule set from all the data which have been accumulated from the beginning every time one has to predict new data set. We found neither of these two is as good as the method of accumulated rule set in its performance. Furthermore, the study shows experiments with different prediction models. The first approach is building a prediction model only with more important rule sets and the second approach is the method using all the rule sets by assigning weights on the rules based on their performance. The second approach shows better performance compared to the first one. The experiments also show that the suggested method in this study can be an efficient approach for mining information and pattern with stream data. This method has a limitation of bounding its application to stock market data. More dynamic real-time steam data set is desirable for the application of this method. There is also another problem in this study. When the number of rules is increasing over time, it has to manage special rules such as redundant rules or conflicting rules efficiently.

ANC Caching Technique for Replacement of Execution Code on Active Network Environment (액티브 네트워크 환경에서 실행 코드 교체를 위한 ANC 캐싱 기법)

  • Jang Chang-bok;Lee Moo-Hun;Cho Sung-Hoon;Choi Eui-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.610-618
    • /
    • 2005
  • As developed Internet and Computer Capability, Many Users take the many information through the network. So requirement of User that use to network was rapidly increased and become various. But it spend much time to accept user requirement on current network, so studied such as Active network for solved it. This Active node on Active network have the capability that stored and processed execution code aside from capability of forwarding packet on current network. So required execution code for executed packet arrived in active node, if execution code should not be in active node, have to take by request previous Action node and Code Server to it. But if this execution code take from previous active node and Code Server, bring to time delay by transport execution code and increased traffic of network and execution time. So, As used execution code stored in cache on active node, it need to increase execution time and decreased number of request. So, our paper suggest ANC caching technique that able to decrease number of execution code request and time of execution code by efficiently store execution code to active node. ANC caching technique may decrease the network traffic and execution time of code, to decrease request of execution code from previous active node.

Comparative Analysis of ViSCa Platform-based Mobile Payment Service with other Cases (스마트카드 가상화(ViSCa) 플랫폼 기반 모바일 결제 서비스 제안 및 타 사례와의 비교분석)

  • Lee, June-Yeop;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.163-178
    • /
    • 2014
  • Following research proposes "Virtualization of Smart Cards (ViSCa)" which is a security system that aims to provide a multi-device platform for the deployment of services that require a strong security protocol, both for the access & authentication and execution of its applications and focuses on analyzing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service by comparing with other similar cases. At the present day, the appearance of new ICT, the diffusion of new user devices (such as smartphones, tablet PC, and so on) and the growth of internet penetration rate are creating many world-shaking services yet in the most of these applications' private information has to be shared, which means that security breaches and illegal access to that information are real threats that have to be solved. Also mobile payment service is, one of the innovative services, has same issues which are real threats for users because mobile payment service sometimes requires user identification, an authentication procedure and confidential data sharing. Thus, an extra layer of security is needed in their communication and execution protocols. The Virtualization of Smart Cards (ViSCa), concept is a holistic approach and centralized management for a security system that pursues to provide a ubiquitous multi-device platform for the arrangement of mobile payment services that demand a powerful security protocol, both for the access & authentication and execution of its applications. In this sense, Virtualization of Smart Cards (ViSCa) offers full interoperability and full access from any user device without any loss of security. The concept prevents possible attacks by third parties, guaranteeing the confidentiality of personal data, bank accounts or private financial information. The Virtualization of Smart Cards (ViSCa) concept is split in two different phases: the execution of the user authentication protocol on the user device and the cloud architecture that executes the secure application. Thus, the secure service access is guaranteed at anytime, anywhere and through any device supporting previously required security mechanisms. The security level is improved by using virtualization technology in the cloud. This virtualization technology is used terminal virtualization to virtualize smart card hardware and thrive to manage virtualized smart cards as a whole, through mobile cloud technology in Virtualization of Smart Cards (ViSCa) platform-based mobile payment service. This entire process is referred to as Smart Card as a Service (SCaaS). Virtualization of Smart Cards (ViSCa) platform-based mobile payment service virtualizes smart card, which is used as payment mean, and loads it in to the mobile cloud. Authentication takes place through application and helps log on to mobile cloud and chooses one of virtualized smart card as a payment method. To decide the scope of the research, which is comparing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service with other similar cases, we categorized the prior researches' mobile payment service groups into distinct feature and service type. Both groups store credit card's data in the mobile device and settle the payment process at the offline market. By the location where the electronic financial transaction information (data) is stored, the groups can be categorized into two main service types. First is "App Method" which loads the data in the server connected to the application. Second "Mobile Card Method" stores its data in the Integrated Circuit (IC) chip, which holds financial transaction data, which is inbuilt in the mobile device secure element (SE). Through prior researches on accept factors of mobile payment service and its market environment, we came up with six key factors of comparative analysis which are economic, generality, security, convenience(ease of use), applicability and efficiency. Within the chosen group, we compared and analyzed the selected cases and Virtualization of Smart Cards (ViSCa) platform-based mobile payment service.

The Method for Real-time Complex Event Detection of Unstructured Big data (비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법)

  • Lee, Jun Heui;Baek, Sung Ha;Lee, Soon Jo;Bae, Hae Young
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.99-109
    • /
    • 2012
  • Recently, due to the growth of social media and spread of smart-phone, the amount of data has considerably increased by full use of SNS (Social Network Service). According to it, the Big Data concept is come up and many researchers are seeking solutions to make the best use of big data. To maximize the creative value of the big data held by many companies, it is required to combine them with existing data. The physical and theoretical storage structures of data sources are so different that a system which can integrate and manage them is needed. In order to process big data, MapReduce is developed as a system which has advantages over processing data fast by distributed processing. However, it is difficult to construct and store a system for all key words. Due to the process of storage and search, it is to some extent difficult to do real-time processing. And it makes extra expenses to process complex event without structure of processing different data. In order to solve this problem, the existing Complex Event Processing System is supposed to be used. When it comes to complex event processing system, it gets data from different sources and combines them with each other to make it possible to do complex event processing that is useful for real-time processing specially in stream data. Nevertheless, unstructured data based on text of SNS and internet articles is managed as text type and there is a need to compare strings every time the query processing should be done. And it results in poor performance. Therefore, we try to make it possible to manage unstructured data and do query process fast in complex event processing system. And we extend the data complex function for giving theoretical schema of string. It is completed by changing the string key word into integer type with filtering which uses keyword set. In addition, by using the Complex Event Processing System and processing stream data at real-time of in-memory, we try to reduce the time of reading the query processing after it is stored in the disk.

IT Service Strategy on Development of Online Floral Distribution Service : A Typhoon Positioning Strategy (화훼소매점의 온라인 유통서비스 진화에 따른 정보기술서비스 전략 - A Typhoon Positioning Strategy를 중심으로 -)

  • Lee, Seung-chang;Ahn, Sung-hyuck;Lee, Soong
    • Journal of Distribution Science
    • /
    • v.7 no.4
    • /
    • pp.15-26
    • /
    • 2009
  • The internet has dramatically changed a way of business management and competition in the business environment. Especially, it stimulated not only to evolve online floral distribution service but also to change a phase of competition among floral retail stores in industry. And that also led to keen competition among IT service providers as well. This study is to examine how floral retail stores have been evolved and competed with the radical situation of the floral distribution industry through IT service in the aspect of business and information technology. In addition, the Typhoon Positioning Strategy(TPS), a strategy for the IT service positioning, is introduced from IT service provider's perspective. For IT service providers to create high business value and continuous service providing, IT service should be positioned on the customers' "core business" and developed to the level of "solution." The Typhoon Positioning Strategy(TPS) is a strategy for the IT service positioning, indicating that IT service should be positioned according to a Business Process-Service model with the consideration of business development direction, IT service trend, and user's IT capability. That is, IT service providers should find out customers' "core business" area first to provide a right IT service to the company, and the IT service provided should meet to the level of business solution. The capability of the IT solution users is also an important factor to be considered for the advanced IT service. There are four principles of the Typhoon Positioning Strategy(TPS). Principle 1) IT service provided should be an IT solution Map suitable for customer business processes. Principle 2) IT service provided should be able to support customer core business. Principle 3) IT service provided should be a business solution. Principle. 4) IT service provided should be applied differently according to the level of customer's IT capability.

  • PDF

A Study on the Relationship Between Online Community Characteristics and Loyalty : Focused on Mediating Roles of Self-Congruency, Consumer Experience, and Consumer to Consumer Interactivity (온라인 커뮤니티 특성과 충성도 간의 관계에 대한 연구: 자아일치성, 소비자 체험, 상호작용성의 매개적 역할을 중심으로)

  • Kim, Moon-Tae;Ock, Jung-Won
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.157-194
    • /
    • 2008
  • The popularity of communities on the internet has captured the attention of marketing scholars and practitioners. By adapting to the culture of the internet, however, and providing consumer with the ability to interact with one another in addition to the company, businesses can build new and deeper relationships with customers. The economic potential of online communities has been discussed with much hope in the many popular papers. In contrast to this enthusiastic prognostications, empirical and practical evidence regarding the economic potential of the online community has shown a little different conclusion. To date, even communities with high levels of membership and vibrant social arenas have failed to build financial viability. In this perspective, this study investigates the role of various kinds of influencing factors to online community loyalty and basically suggests the framework that explains the process of building purchase loyalty. Even though the importance of building loyalty in an online environment has been emphasized from the marketing theorists and practitioners, there is no sufficient research conclusion about what is the process of building purchase loyalty and the most powerful factors that influence to it. In this study, the process of building purchase loyalty is divided into three levels; characteristics of community site such as content superiority, site vividness, navigation easiness, and customerization, the mediating variables such as self congruency, consumer experience, and consumer to consumer interactivity, and finally various factors about online community loyalty such as visit loyalty, affect, trust, and purchase loyalty are those things. And the findings of this research are as follows. First, consumer-to-consumer interactivity is an important factor to online community purchase loyalty and other loyalty factors. This means, in order to interact with other people more actively, many participants in online community have the willingness to buy some kinds of products such as music, content, avatar, and etc. From this perspective, marketers of online community have to create some online environments in order that consumers can easily interact with other consumers and make some site environments in order that consumer can feel experience in this site is interesting and self congruency is higher than at other community sites. It has been argued that giving consumers a good experience is vital in cyber space, and websites create an active (rather than passive) customer by their nature. Some researchers have tried to pin down the positive experience, with limited success and less empirical support. Web sites can provide a cognitively stimulating experience for the user. We define the online community experience as playfulness based on the past studies. Playfulness is created by the excitement generated through a website's content and measured using three descriptors Marketers can promote using and visiting online communities, which deliver a superior web experience, to influence their customers' attitudes and actions, encouraging high involvement with those communities. Specially, we suggest that transcendent customer experiences(TCEs) which have aspects of flow and/or peak experience, can generate lasting shifts in beliefs and attitudes including subjective self-transformation and facilitate strong consumer's ties to a online community. And we find that website success is closely related to positive website experiences: consumers will spend more time on the site, interacting with other users. As we can see figure 2, visit loyalty and consumer affect toward the online community site didn't directly influence to purchase loyalty. This implies that there may be a little different situations here in online community site compared to online shopping mall studies that shows close relations between revisit intention and purchase intention. There are so many alternative sites on web, consumers do not want to spend money to buy content and etc. In this sense, marketers of community websites must know consumers' affect toward online community site is not a last goal and important factor to influnece consumers' purchase. Third, building good content environment can be a really important marketing tool to create a competitive advantage in cyberspace. For example, Cyworld, Korea's number one community site shows distinctive superiority in the consumer evaluations of content characteristics such as content superiority, site vividness, and customerization. Particularly, comsumer evaluation about customerization was remarkably higher than the other sites. In this point, we can conclude that providing comsumers with good, unique and highly customized content will be urgent and important task directly and indirectly impacting to self congruency, consumer experience, c-to-c interactivity, and various loyalty factors of online community. By creating enjoyable, useful, and unique online community environments, online community portals such as Daum, Naver, and Cyworld are able to build customer loyalty to a degree that many of today's online marketer can only dream of these loyalty, in turn, generates strong economic returns. Another way to build good online community site is to provide consumers with an interactive, fun, experience-oriented or experiential Web site. Elements that can make a dot.com's Web site experiential include graphics, 3-D images, animation, video and audio capabilities. In addition, chat rooms and real-time customer service applications (which link site visitors directly to other visitors, or with company support personnel, respectively) are also being used to make web sites more interactive. Researchers note that online communities are increasingly incorporating such applications in their Web sites, in order to make consumers' online shopping experience more similar to that of an offline store. That is, if consumers are able to experience sensory stimulation (e.g. via 3-D images and audio sound), interact with other consumers (e.g., via chat rooms), and interact with sales or support people (e.g. via a real-time chat interface or e-mail), then they are likely to have a more positive dot.com experience, and develop a more positive image toward the online company itself). Analysts caution, however, that, while high quality graphics, animation and the like may create a fun experience for consumers, when heavily used, they can slow site navigation, resulting in frustrated consumers, who may never return to a site. Consequently, some analysts suggest that, at least with current technology, the rule-of-thumb is that less is more. That is, while graphics etc. can draw consumers to a site, they should be kept to a minimum, so as not to impact negatively on consumers' overall site experience.

  • PDF

Introduction of region-based site functions into the traditional market environmental support funding policy development (재래시장 환경개선 지원정책 개발에서의 지역 장소적 기능 도입)

  • Jeong, Dae-Yong;Lee, Se-Ho
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2005.05a
    • /
    • pp.383-405
    • /
    • 2005
  • The traditional market is foremost a regionally positioned place, wherein the market directly represents regional and cultural centered traits while it plays an important role in the circulation of facilities through reciprocal, informative and cultural exchanges while sewing to form local communities. The traditional market in Korea is one of representative retail businesses and premodern marketing techniques by family owned business of less than five members such as product management, purchase method, and marketing patterns etc. Since the 1990s, the appearance of new circulation-type businesses and large discount convenience stores escalated the loss of traditional competitiveness, increased the living standard of customers, changed purchasing patterns, and expanded the ubiquity of the Internet. All of these changes in external circulation circumstances have led the traditional markets to lose their place in the economy. The traditional market should revive on a regional site basis through the formation of a community of regional neighbors and through knowledge-sharing that leads to the creation of wealth. For the purpose of creating a wealth in a place, the following components are necessary: 1) a facility suitable for the spatial place of the present, 2)trust built through exchanges within the changing market environment, which would simultaneously satisfy customer's desires, 3) international bench marking on cases such as regionally centered TCM (England), BID (USA), and TMO (Japan) so that the market unit of store placement transfers from a spot policy to a line policy, 4)conversion of communicative conception through a surface policy approach centered around a macro-region perspective. The budget of the traditional market funding policy was operational between 2001 and 2004, serving as a counter move to solve the problem of the old traditional market through government intervention in regional economies to promote national economic strength. This national treasury funding project was centered on environmental improvement, research corps, and business modernization through the expenditure of 3,853 hundred million won (Korean currency). However, the effectiveness of this project has yet to be to proven through investigation. Furthermore, in promoting this funding support project, a lack of professionalism among merchants in the market led to constant limitations in comprehensive striving strategies, reduced capabilities in middle-and long-term plan setup, and created reductions in voluntary merchant agreement solutions. The traditional market should go beyond mere physical place and ordinary products creative site strategies employing the communicative approach must accompany these strategies to make the market a new regional and spatial living place. Thus, regarding recent paradigm changes and the introduction of region-based site functions into the traditional market, acquiring a conversion of direction into the newly developed project is essential to reinvestigate the traditional market composed of cultural and economic meanings, for the purpose of the research. Excavating social policy demands through the comparative analysis of domestic and international cases as well as innovative and expert management leadership development for NPO or NGO civil entrepreneurs through advanced case research on present promotion methods is extremely important. Discovering the seeds of the cultural contents industry cored around regional resource usages, commercializing regionally reknowned products, and constructing complex cultural living places for regional networks are especially important. In order to accelerate these solutions, a comprehensive and systemized approach research operated within a mentor academy system is required, as research will reveal distinctive traits of the traditional market in the aging society.

  • PDF

Electronic Word-of-Mouth in B2C Virtual Communities: An Empirical Study from CTrip.com (B2C허의사구중적전자구비(B2C虚拟社区中的电子口碑): 관우휴정려유망적실증연구(关于携程旅游网的实证研究))

  • Li, Guoxin;Elliot, Statia;Choi, Chris
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • Virtual communities (VCs) have developed rapidly, with more and more people participating in them to exchange information and opinions. A virtual community is a group of people who may or may not meet one another face to face, and who exchange words and ideas through the mediation of computer bulletin boards and networks. A business-to-consumer virtual community (B2CVC) is a commercial group that creates a trustworthy environment intended to motivate consumers to be more willing to buy from an online store. B2CVCs create a social atmosphere through information contribution such as recommendations, reviews, and ratings of buyers and sellers. Although the importance of B2CVCs has been recognized, few studies have been conducted to examine members' word-of-mouth behavior within these communities. This study proposes a model of involvement, statistics, trust, "stickiness," and word-of-mouth in a B2CVC and explores the relationships among these elements based on empirical data. The objectives are threefold: (i) to empirically test a B2CVC model that integrates measures of beliefs, attitudes, and behaviors; (ii) to better understand the nature of these relationships, specifically through word-of-mouth as a measure of revenue generation; and (iii) to better understand the role of stickiness of B2CVC in CRM marketing. The model incorporates three key elements concerning community members: (i) their beliefs, measured in terms of their involvement assessment; (ii) their attitudes, measured in terms of their satisfaction and trust; and, (iii) their behavior, measured in terms of site stickiness and their word-of-mouth. Involvement is considered the motivation for consumers to participate in a virtual community. For B2CVC members, information searching and posting have been proposed as the main purpose for their involvement. Satisfaction has been reviewed as an important indicator of a member's overall community evaluation, and conceptualized by different levels of member interactions with their VC. The formation and expansion of a VC depends on the willingness of members to share information and services. Researchers have found that trust is a core component facilitating the anonymous interaction in VCs and e-commerce, and therefore trust-building in VCs has been a common research topic. It is clear that the success of a B2CVC depends on the stickiness of its members to enhance purchasing potential. Opinions communicated and information exchanged between members may represent a type of written word-of-mouth. Therefore, word-of-mouth is one of the primary factors driving the diffusion of B2CVCs across the Internet. Figure 1 presents the research model and hypotheses. The model was tested through the implementation of an online survey of CTrip Travel VC members. A total of 243 collected questionnaires was reduced to 204 usable questionnaires through an empirical process of data cleaning. The study's hypotheses examined the extent to which involvement, satisfaction, and trust influence B2CVC stickiness and members' word-of-mouth. Structural Equation Modeling tested the hypotheses in the analysis, and the structural model fit indices were within accepted thresholds: ${\chi}^2^$/df was 2.76, NFI was .904, IFI was .931, CFI was .930, and RMSEA was .017. Results indicated that involvement has a significant influence on satisfaction (p<0.001, ${\beta}$=0.809). The proportion of variance in satisfaction explained by members' involvement was over half (adjusted $R^2$=0.654), reflecting a strong association. The effect of involvement on trust was also statistically significant (p<0.001, ${\beta}$=0.751), with 57 percent of the variance in trust explained by involvement (adjusted $R^2$=0.563). When the construct "stickiness" was treated as a dependent variable, the proportion of variance explained by the variables of trust and satisfaction was relatively low (adjusted $R^2$=0.331). Satisfaction did have a significant influence on stickiness, with ${\beta}$=0.514. However, unexpectedly, the influence of trust was not even significant (p=0.231, t=1.197), rejecting that proposed hypothesis. The importance of stickiness in the model was more significant because of its effect on e-WOM with ${\beta}$=0.920 (p<0.001). Here, the measures of Stickiness explain over eighty of the variance in e-WOM (Adjusted $R^2$=0.846). Overall, the results of the study supported the hypothesized relationships between members' involvement in a B2CVC and their satisfaction with and trust of it. However, trust, as a traditional measure in behavioral models, has no significant influence on stickiness in the B2CVC environment. This study contributes to the growing body of literature on B2CVCs, specifically addressing gaps in the academic research by integrating measures of beliefs, attitudes, and behaviors in one model. The results provide additional insights to behavioral factors in a B2CVC environment, helping to sort out relationships between traditional measures and relatively new measures. For practitioners, the identification of factors, such as member involvement, that strongly influence B2CVC member satisfaction can help focus technological resources in key areas. Global e-marketers can develop marketing strategies directly targeting B2CVC members. In the global tourism business, they can target Chinese members of a B2CVC by providing special discounts for active community members or developing early adopter programs to encourage stickiness in the community. Future studies are called for, and more sophisticated modeling, to expand the measurement of B2CVC member behavior and to conduct experiments across industries, communities, and cultures.

Intelligent VOC Analyzing System Using Opinion Mining (오피니언 마이닝을 이용한 지능형 VOC 분석시스템)

  • Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • Every company wants to know customer's requirement and makes an effort to meet them. Cause that, communication between customer and company became core competition of business and that important is increasing continuously. There are several strategies to find customer's needs, but VOC (Voice of customer) is one of most powerful communication tools and VOC gathering by several channels as telephone, post, e-mail, website and so on is so meaningful. So, almost company is gathering VOC and operating VOC system. VOC is important not only to business organization but also public organization such as government, education institute, and medical center that should drive up public service quality and customer satisfaction. Accordingly, they make a VOC gathering and analyzing System and then use for making a new product and service, and upgrade. In recent years, innovations in internet and ICT have made diverse channels such as SNS, mobile, website and call-center to collect VOC data. Although a lot of VOC data is collected through diverse channel, the proper utilization is still difficult. It is because the VOC data is made of very emotional contents by voice or text of informal style and the volume of the VOC data are so big. These unstructured big data make a difficult to store and analyze for use by human. So that, the organization need to automatic collecting, storing, classifying and analyzing system for unstructured big VOC data. This study propose an intelligent VOC analyzing system based on opinion mining to classify the unstructured VOC data automatically and determine the polarity as well as the type of VOC. And then, the basis of the VOC opinion analyzing system, called domain-oriented sentiment dictionary is created and corresponding stages are presented in detail. The experiment is conducted with 4,300 VOC data collected from a medical website to measure the effectiveness of the proposed system and utilized them to develop the sensitive data dictionary by determining the special sentiment vocabulary and their polarity value in a medical domain. Through the experiment, it comes out that positive terms such as "칭찬, 친절함, 감사, 무사히, 잘해, 감동, 미소" have high positive opinion value, and negative terms such as "퉁명, 뭡니까, 말하더군요, 무시하는" have strong negative opinion. These terms are in general use and the experiment result seems to be a high probability of opinion polarity. Furthermore, the accuracy of proposed VOC classification model has been compared and the highest classification accuracy of 77.8% is conformed at threshold with -0.50 of opinion classification of VOC. Through the proposed intelligent VOC analyzing system, the real time opinion classification and response priority of VOC can be predicted. Ultimately the positive effectiveness is expected to catch the customer complains at early stage and deal with it quickly with the lower number of staff to operate the VOC system. It can be made available human resource and time of customer service part. Above all, this study is new try to automatic analyzing the unstructured VOC data using opinion mining, and shows that the system could be used as variable to classify the positive or negative polarity of VOC opinion. It is expected to suggest practical framework of the VOC analysis to diverse use and the model can be used as real VOC analyzing system if it is implemented as system. Despite experiment results and expectation, this study has several limits. First of all, the sample data is only collected from a hospital web-site. It means that the sentimental dictionary made by sample data can be lean too much towards on that hospital and web-site. Therefore, next research has to take several channels such as call-center and SNS, and other domain like government, financial company, and education institute.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.