• Title/Summary/Keyword: Internet of Drones

Search Result 74, Processing Time 0.029 seconds

A New Design of Privacy Preserving Authentication Protocol in a Mobile Sink UAV Setting (Mobile Sink UAV 환경에서 프라이버시를 보장하는 새로운 인증 프로토콜 설계)

  • Oh, Sang Yun;Jeong, Jae Yeol;Jeong, Ik Rae;Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1247-1260
    • /
    • 2021
  • For more efficient energy management of nodes in wireless sensor networks, research has been conducted on mobile sink nodes that deliver data from sensor nodes to server recently. UAV (Unmanned Aerial vehicle) is used as a representative mobile sink node. Also, most studies on UAV propose algorithms for calculating optimal paths and have produced rapid advances in the IoD (Internet of Drones) environment. At the same time, some papers proposed mutual authentication and secure key exchange considering nature of the IoD, which requires efficient creation of multiple nodes and session keys in security perspective. However, most papers that proposed secure communication in mobile sink nodes did not protect end-to-end data privacy. Therefore, in this paper, we propose integrated security model that authentication between mobile sink nodes and sensor nodes to securely relay sensor data to base stations. Also, we show informal security analysis that our scheme is secure from various known attacks. Finally, we compare communication overhead with other key exchange schemes previously proposed.

A Study on Routing Protocol for Multi-Drone Communication (멀티드론 통신을 위한 라우팅 프로토콜 연구)

  • Kim, Jongkwon;Chung, Yeongjee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.41-46
    • /
    • 2019
  • In this paper, it is necessary to study the bandwidth and network system for efficient image transmission in the current era of drone imaging, and to design routing protocols to round out and cluster two or more multi-drones. First, we want to construct an ad hoc network to control the multidrone. Several studies are underway for the clustering of drones. The aircraft ad hoc network (FANET) is an important foundation for this research. A number of routing protocols have been proposed to design a FANET, and these routing protocols show different performances in various situations and environments. The routing protocol used to design the FANET is tested using the routing protocol used in the existing mobile ad hoc network (MANET). Therefore, we will use MANET to simulate the routing protocol to be used in the FANET, helping to select the optimal routing protocol for future FANET design. Finally, this paper describes the routing protocols that are mainly used in MANET and suitable for FANET, and the performance comparison of routing protocols, which are mainly used in FANET design.

Anti-Drone Technology for Drone Threat Response: Current Status and Future Directions

  • Jinwoo Jeong;Isaac Sim;Sangbom Yun;Junghyun Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.115-127
    • /
    • 2023
  • In this paper, we have undertaken a comprehensive investigation into the current state of anti-drone technology due to the increasing concerns and risks associated with the widespread use of drones. We carefully analyze anti-drone technology, dividing it into three crucial domains: detection, identification, and neutralization methods. This categorization enables us to delve into intricate technical details, highlighting the diverse techniques used to counter evolving drone threats. Additionally, we explore the legal and regulatory aspects of implementing anti-drone technology. Our research also envisions potential directions for advancing and evolving anti-drone tech to ensure its effectiveness in an ever-changing threat environment.

A Study on Method to prevent Collisions of Multi-Drone Operation in controlled Airspace (관제 공역 다중 드론 운행 충돌 방지 방안 연구)

  • Yoo, Soonduck;Choi, Taein;Jo, Seongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.103-111
    • /
    • 2021
  • The purpose of this study is to study a method for preventing collisions of multiple drones in controlled airspace. As a result of the study, it was proved that it is appropriate as a method to control drone collisions after setting accurate information on the ROI (Region of Interest) area estimated based on the expected drone path and time in the control system as a method to avoid drone collision. As a result of the empirical analysis, the diameter of the flight path of the operating drone should be selected to reduce the risk of collision, and the change in the departure time and operating speed of the operating drone did not act as an influencing factor in the collision. In addition, it has been demonstrated that providing flight priority is one of the appropriate methods as a countermeasure to avoid collisions. For collision avoidance methods, not only drone sensor-based collision avoidance, but also collision avoidance can be doubled by monitoring and predicting collisions in the control system and performing real-time control. This study is meaningful in that it provided an idea for a method for preventing collisions of multiple drones in controlled airspace and conducted practical tests. This helps to solve the problem of collisions that occur when multiple drones of different types are operating based on the control system. This study will contribute to the development of related industries by preventing accidents caused by drone collisions and providing a safe drone operation environment.

Deeper SSD: Simultaneous Up-sampling and Down-sampling for Drone Detection

  • Sun, Han;Geng, Wen;Shen, Jiaquan;Liu, Ningzhong;Liang, Dong;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4795-4815
    • /
    • 2020
  • Drone detection can be considered as a specific sort of small object detection, which has always been a challenge because of its small size and few features. For improving the detection rate of drones, we design a Deeper SSD network, which uses large-scale input image and deeper convolutional network to obtain more features that benefit small object classification. At the same time, in order to improve object classification performance, we implemented the up-sampling modules to increase the number of features for the low-level feature map. In addition, in order to improve object location performance, we adopted the down-sampling modules so that the context information can be used by the high-level feature map directly. Our proposed Deeper SSD and its variants are successfully applied to the self-designed drone datasets. Our experiments demonstrate the effectiveness of the Deeper SSD and its variants, which are useful to small drone's detection and recognition. These proposed methods can also detect small and large objects simultaneously.

The Design and Implementation of Mobile Application Solution for Forest Fire based on Drone Photography and Amazon Web Service (AWS)

  • Choi, Si-eun;Bang, Jong-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2020
  • Last year's Goseong-Sokcho forest fires have highlighted the limitations of extinguishing work for night-time forest fire and the importance of quick identification for information on the spread of forest fire. However, it is not easy to find services that take into account the characteristics of forest fires, as most existing disaster-related mobile applications and research assume various disaster situations rather than just forest fire situations. Therefore, a system that can provide information quickly is needed, taking into account the characteristics of forest fires and the limitations of extinguishing work. In this paper, we propose evacuation route guidance services that bypass areas where fire has already spread, supplement existing methods of extinguishing work, and provide general information on forest fire situations in real time, by putting drones into forest fire situations. It has been implemented to automate image analysis using the Rekognition service of Amazon Web Service (AWS), and the results of fire detection and the T Map API guide the evacuation path. It is expected that the results of this paper will allow efficient and rapid rescue and extinguishing work to be carried out, and further reduce the damage of human life caused by forest fires.

A Survey on UAV Network for Secure Communication and Attack Detection: A focus on Q-learning, Blockchain, IRS and mmWave Technologies

  • Madhuvanthi T;Revathi A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.779-800
    • /
    • 2024
  • Unmanned Aerial Vehicle (UAV) networks, also known as drone networks, have gained significant attention for their potential in various applications, including communication. UAV networks for communication involve using a fleet of drones to establish wireless connectivity and provide communication services in areas where traditional infrastructure is lacking or disrupted. UAV communication networks need to be highly secured to ensure the technology's security and the users' safety. The proposed survey provides a comprehensive overview of the current state-of-the-art UAV network security solutions. In this paper, we analyze the existing literature on UAV security and identify the various types of attacks and the underlying vulnerabilities they exploit. Detailed mitigation techniques and countermeasures for the protection of UAVs are described in this paper. The survey focuses on the implementation of novel technologies like Q-learning, blockchain, IRS, and mmWave. This paper discusses network simulation tools that range in complexity, features, and programming capabilities. Finally, future research directions and challenges are highlighted.

A Comprehensive Literature Study on Precision Agriculture: Tools and Techniques

  • Bh., Prashanthi;A.V. Praveen, Krishna;Ch. Mallikarjuna, Rao
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.229-238
    • /
    • 2022
  • Due to digitization, data has become a tsunami in almost every data-driven business sector. The information wave has been greatly boosted by man-to-machine (M2M) digital data management. An explosion in the use of ICT for farm management has pushed technical solutions into rural areas and benefited farmers and customers alike. This study discusses the benefits and possible pitfalls of using information and communication technology (ICT) in conventional farming. Information technology (IT), the Internet of Things (IoT), and robotics are discussed, along with the roles of Machine learning (ML), Artificial intelligence (AI), and sensors in farming. Drones are also being studied for crop surveillance and yield optimization management. Global and state-of-the-art Internet of Things (IoT) agricultural platforms are emphasized when relevant. This article analyse the most current publications pertaining to precision agriculture using ML and AI techniques. This study further details about current and future developments in AI and identify existing and prospective research concerns in AI for agriculture based on this thorough extensive literature evaluation.

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.

Leveraging Deep Learning and Farmland Fertility Algorithm for Automated Rice Pest Detection and Classification Model

  • Hussain. A;Balaji Srikaanth. P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.959-979
    • /
    • 2024
  • Rice pest identification is essential in modern agriculture for the health of rice crops. As global rice consumption rises, yields and quality must be maintained. Various methodologies were employed to identify pests, encompassing sensor-based technologies, deep learning, and remote sensing models. Visual inspection by professionals and farmers remains essential, but integrating technology such as satellites, IoT-based sensors, and drones enhances efficiency and accuracy. A computer vision system processes images to detect pests automatically. It gives real-time data for proactive and targeted pest management. With this motive in mind, this research provides a novel farmland fertility algorithm with a deep learning-based automated rice pest detection and classification (FFADL-ARPDC) technique. The FFADL-ARPDC approach classifies rice pests from rice plant images. Before processing, FFADL-ARPDC removes noise and enhances contrast using bilateral filtering (BF). Additionally, rice crop images are processed using the NASNetLarge deep learning architecture to extract image features. The FFA is used for hyperparameter tweaking to optimise the model performance of the NASNetLarge, which aids in enhancing classification performance. Using an Elman recurrent neural network (ERNN), the model accurately categorises 14 types of pests. The FFADL-ARPDC approach is thoroughly evaluated using a benchmark dataset available in the public repository. With an accuracy of 97.58, the FFADL-ARPDC model exceeds existing pest detection methods.