• Title/Summary/Keyword: Internet of Drones

Search Result 74, Processing Time 0.022 seconds

Design of Smart City Considering Carbon Emissions under The Background of Industry 5.0

  • Fengjiao Zhou;Rui Ma;Mohamad Shaharudin bin Samsurijan;Xiaoqin Xie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.903-921
    • /
    • 2024
  • Industry 5.0 puts forward higher requirements for smart cities, including low-carbon, sustainable, and people-oriented, which pose challenges to the design of smart cities. In response to the above challenges, this study introduces the cyber-physical-social system (CPSS) and parallel system theory into the design of smart cities, and constructs a smart city framework based on parallel system theory. On this basis, in order to enhance the security of smart cities, a sustainable patrol subsystem for smart cities has been established. The intelligent patrol system uses a drone platform, and the trajectory planning of the drone is a key problem that needs to be solved. Therefore, a mathematical model was established that considers various objectives, including minimizing carbon emissions, minimizing noise impact, and maximizing coverage area, while also taking into account the flight performance constraints of drones. In addition, an improved metaheuristic algorithm based on ant colony optimization (ACO) algorithm was designed for trajectory planning of patrol drones. Finally, a digital environmental map was established based on real urban scenes and simulation experiments were conducted. The results show that compared with the other three metaheuristic algorithms, the algorithm designed in this study has the best performance.

An Improved RF Detection Algorithm Using EMD-based WT

  • Lv, Xue;Wang, Zekun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3862-3879
    • /
    • 2019
  • More and more problems for public security have occurred due to the limited solutions for drone detection especially for micro-drone in long range conditions. This paper aims at dealing with drones detection using a radar system. The radio frequency (RF) signals emitted by a controller can be acquired using the radar, which are usually too weak to extract. To detect the drone successfully, the static clutters and linear trend terms are suppressed based on the background estimation algorithm and linear trend suppression. The principal component analysis technique is used to classify the noises and effective RF signals. The automatic gain control technique is used to enhance the signal to noise ratios (SNR) of RF signals. Meanwhile, the empirical mode decomposition (EMD) based wavelet transform (WT) is developed to decrease the influences of the Gaussian white noises. Then, both the azimuth information between the drone and radar and the bandwidth of the RF signals are acquired based on the statistical analysis algorithm developed in this paper. Meanwhile, the proposed accumulation algorithm can also provide the bandwidth estimation, which can be used to make a decision accurately whether there are drones or not in the detection environments based on the probability theory. The detection performance is validated with several experiments conducted outdoors with strong interferences.

Advancements in Unmanned Aerial Vehicle Classification, Tracking, and Detection Algorithms

  • Ahmed Abdulhakim Al-Absi
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.32-39
    • /
    • 2023
  • This paper provides a comprehensive overview of UAV classification, tracking, and detection, offering researchers a clear understanding of these fundamental concepts. It elucidates how classification categorizes UAVs based on attributes, how tracking monitors real-time positions, and how detection identifies UAV presence. The interconnectedness of these aspects is highlighted, with detection enhancing tracking and classification aiding in anomaly identification. Moreover, the paper emphasizes the relevance of simulations in the context of drones and UAVs, underscoring their pivotal role in training, testing, and research. By succinctly presenting these core concepts and their practical implications, the paper equips researchers with a solid foundation to comprehend and explore the complexities of UAV operations and the role of simulations in advancing this dynamic field.

Exploring the Social Proxemics of Human-Drone Interaction

  • Han, Jeonghye;Moore, Dylan;Bae, Ilhan
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Drones will evolve from military to personal or social purposes. How can people socially interact with a drone that is familiar to them? This study explored the social proximity of human drone interaction with safety glass wall between participants and drone. The experiment results showed that drone's altitude, size and gender factor did not significantly affect social proxemics as to what extent participants got closer to hovering drones by the limitation of the distance from the safety wall. However, it shows a tendency that participants more closely approached an eye-level drone compared with an overhead drone, and females tended to approach more closely males. This study consequently demonstrated that most participants are nearly ready to allow a near field operation of social drone under safe conditions.

Internet of Drone: Identity Management using Hyperledger Fabric Platforms

  • Etienne, Igugu Tshisekedi;Kang, Sung-Won;Rhee, Kyung-hyune
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.204-207
    • /
    • 2022
  • The uses of drones are increasing despite the fact that many of us are still skeptical. In the near future, the data that will be created and used by them will be very voluminous, hence the need to find an architecture that allows good identity management and access control in a decentralized way while guaranteeing security and privacy. In this article, we propose an architecture using hyperledger fabric blockchain platform which will manage the identity in a secure way starting with the registration of the drones on the network then an access control thanks to Public Key Infrastructure (PKI) and membership service provider (MSP) to enable decision-making within the system.

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.

A Study on Vulnerability Analysis and Memory Forensics of ESP32

  • Jiyeon Baek;Jiwon Jang;Seongmin Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.3
    • /
    • pp.1-8
    • /
    • 2024
  • As the Internet of Things (IoT) has gained significant prominence in our daily lives, most IoT devices rely on over-the-air technology to automatically update firmware or software remotely via the network connection to relieve the burden of manual updates by users. And preserving security for OTA interface is one of the main requirements to defend against potential threats. This paper presents a simulation of an attack scenario on the commoditized System-on-a-chip, ESP32 chip, utilized for drones during their OTA update process. We demonstrate three types of attacks, WiFi cracking, ARP spoofing, and TCP SYN flooding techniques and postpone the OTA update procedure on an ESP32 Drone. As in this scenario, unpatched IoT devices can be vulnerable to a variety of potential threats. Additionally, we review the chip to obtain traces of attacks from a forensics perspective and acquire memory forensic artifacts to indicate the SYN flooding attack.

Performance Comparison of CNN-Based Image Classification Models for Drone Identification System (드론 식별 시스템을 위한 합성곱 신경망 기반 이미지 분류 모델 성능 비교)

  • YeongWan Kim;DaeKyun Cho;GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.639-644
    • /
    • 2024
  • Recent developments in the use of drones on battlefields, extending beyond reconnaissance to firepower support, have greatly increased the importance of technologies for early automatic drone identification. In this study, to identify an effective image classification model that can distinguish drones from other aerial targets of similar size and appearance, such as birds and balloons, we utilized a dataset of 3,600 images collected from the internet. We adopted a transfer learning approach that combines the feature extraction capabilities of three pre-trained convolutional neural network models (VGG16, ResNet50, InceptionV3) with an additional classifier. Specifically, we conducted a comparative analysis of the performance of these three pre-trained models to determine the most effective one. The results showed that the InceptionV3 model achieved the highest accuracy at 99.66%. This research represents a new endeavor in utilizing existing convolutional neural network models and transfer learning for drone identification, which is expected to make a significant contribution to the advancement of drone identification technologies.

Power Charge Scheduling and Charge-Ready Battery Allocation Algorithms for Real-Time Drones Services (실시간 드론 서비스를 위한 전원 충전 스케쥴링과 충전 배터리 할당 알고리즘)

  • Tajrian, Mehedi;Kim, Jai-Hoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.12
    • /
    • pp.277-286
    • /
    • 2019
  • The Unmanned Aerial Vehicle (UAV) is one of the most precious inventions of Internet of things (IOT). UAV faces the necessity to charge battery or replace battery from the charging stations during or between services. We propose scheduling algorithms for drone power charging (SADPC). The basic idea of algorithm is considering both a deadline (for increasing deadline miss ratio) and a charging time (for decreasing waiting time) to decide priority on charging station among drones. Our simulation results show that our power charging algorithm for drones are efficient in terms of the deadline miss ratio as well as the waiting time in general in compare to other conventional algorithms (EDF or SJF). Also, we can choose proper algorithms for battery charge scheduling and charge ready battery allocation according to system parameters and user requirements based on our simulation.

Implementation of On-Device AI System for Drone Operated Metal Detection with Magneto-Impedance Sensor

  • Jinbin Kim;Seongchan Park;Yunki Jeong;Hobyung Chae;Seunghyun Lee;Soonchul Kwon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 2024
  • This paper addresses the implementation of an on-device AI-based metal detection system using a Magneto-Impedance Sensor. Performing calculations on the AI device itself is essential, especially for unmanned aerial vehicles such as drones, where communication capabilities may be limited. Consequently, a system capable of analyzing data directly on the device is required. We propose a lightweight gated recurrent unit (GRU) model that can be operated on a drone. Additionally, we have implemented a real-time detection system on a CPU embedded system. The signals obtained from the Magneto-Impedance Sensor are processed in real-time by a Raspberry Pi 4 Model B. During the experiment, the drone flew freely at an altitude ranging from 1 to 10 meters in an open area where metal objects were placed. A total of 20,000,000 sequences of experimental data were acquired, with the data split into training, validation, and test sets in an 8:1:1 ratio. The results of the experiment demonstrated an accuracy of 94.5% and an inference time of 9.8 milliseconds. This study indicates that the proposed system is potentially applicable to unmanned metal detection drones.