• Title/Summary/Keyword: Internet Monitoring

Search Result 1,340, Processing Time 0.024 seconds

A Wind Turbine Fault Detection Approach Based on Cluster Analysis and Frequent Pattern Mining

  • Elijorde, Frank;Kim, Sungho;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.664-677
    • /
    • 2014
  • Wind energy has proven its viability by the emergence of countless wind turbines around the world which greatly contribute to the increased electrical generating capacity of wind farm operators. These infrastructures are usually deployed in not easily accessible areas; therefore, maintenance routines should be based on a well-guided decision so as to minimize cost. To aid operators prior to the maintenance process, a condition monitoring system should be able to accurately reflect the actual state of the wind turbine and its major components in order to execute specific preventive measures using as little resources as possible. In this paper, we propose a fault detection approach which combines cluster analysis and frequent pattern mining to accurately reflect the deteriorating condition of a wind turbine and to indicate the components that need attention. Using SCADA data, we extracted operational status patterns and developed a rule repository for monitoring wind turbine systems. Results show that the proposed scheme is able to detect the deteriorating condition of a wind turbine as well as to explicitly identify faulty components.

A Four-Layer Robust Storage in Cloud using Privacy Preserving Technique with Reliable Computational Intelligence in Fog-Edge

  • Nirmala, E.;Muthurajkumar, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3870-3884
    • /
    • 2020
  • The proposed framework of Four Layer Robust Storage in Cloud (FLRSC) architecture involves host server, local host and edge devices in addition to Virtual Machine Monitoring (VMM). The goal is to protect the privacy of stored data at edge devices. The computational intelligence (CI) part of our algorithm distributes blocks of data to three different layers by partially encoded and forwarded for decoding to the next layer using hash and greed Solomon algorithms. VMM monitoring uses snapshot algorithm to detect intrusion. The proposed system is compared with Tiang Wang method to validate efficiency of data transfer with security. Hence, security is proven against the indexed efficiency. It is an important study to integrate communication between local host software and nearer edge devices through different channels by verifying snapshot using lamport mechanism to ensure integrity and security at software level thereby reducing the latency. It also provides thorough knowledge and understanding about data communication at software level with VMM. The performance evaluation and feasibility study of security in FLRSC against three-layered approach is proven over 232 blocks of data with 98% accuracy. Practical implications and contributions to the growing knowledge base are highlighted along with directions for further research.

A Embedded System Technology for Web based monitoring and control system (웹 기반의 감시제어시스템을 위한 임베디드 시스템 기술)

  • Park, Jong-Jin;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • In this paper, an example of implementation of a embedded system technology for web based monitoring and control system is presented. For it interfaces with target board as an embedded system was developed, which was applied to specific green room model and verified of its usefulness. We implemented client/server socket programs using Java classes, and web based green room monitoring and control system as an user interface using JavaApplet. The implemented system did send information of green room model to client programs well on TCP/IP and control signals from client to green room model well too.

  • PDF

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.

A Tutorial: Information and Communications-based Intelligent Building Energy Monitoring and Efficient Systems

  • Seo, Si-O;Baek, Seung-Yong;Keum, Doyeop;Ryu, Seungwan;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2676-2689
    • /
    • 2013
  • Due to increased consumption of energy in the building environment, the building energy management systems (BEMS) solution has been developed to achieve energy saving and efficiency. However, because of the shortage of building energy management specialists and incompatibility among the energy management systems of different vendors, the BEMS solution can only be applied to limited buildings individually. To solve these problems, we propose a building cluster based remote energy monitoring and management (EMM) system and its functionalities and roles of each sub-system to simultaneously manage the energy problems of several buildings. We also introduce a novel energy demand forecasting algorithm by using past energy consumption data. Extensive performance evaluation study shows that the proposed regression based energy demand forecasting model is well fitted to the actual energy consumption model, and it also outperforms the artificial neural network (ANN) based forecasting model.

Exhibition Monitoring System using USN/RFID based on ECA (USN/RFID를 이용한 ECA기반 전시물 정보 모니터링 시스템)

  • Kim, Gang-Seok;Song, Wang-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.95-100
    • /
    • 2009
  • Nowadays there are many studies and there's huge development about USN/RFID which have great developmental potential to many kinds of applications. More and more real time application apply USN/RFID technology to identify data collect and locate objects. Wide deployment of USN/RFID will generate an unprecedented volume of primitive data in a short time. Duplication and redundancy of primitive data will affect real time performance of application. Thus, security applications must filter primitive data and correlate them for complex pattern detection and transform them to events that provide meaningful, actionable information to end application. In this paper, we design a ECA Rule system for security monitoring of exhibition. This system will process USN/RFID primitive data and event and perform data transformation. It's had applied each now in exhibition hall through this study and efficient data transmission and management forecast that is possible.

  • PDF

Implementation of Multi-function Sensor Module for Vessel Safety Monitoring (어선안전 모니터링 다기능 센서 모듈의 구현)

  • Choi, Jo-Cheon;Cho, Seung-Il;Kim, Seong-Kweon;Kim, Jai-Hyun;Choi, Gyoo-Seok;Cha, Jea-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.135-139
    • /
    • 2009
  • In order to cope with safety issues regarding fisher vessels, a device is required with the real-time monitoring for the safety and risk factors for a capability of informing and alerting function. In embedded modules, there is a trouble that we should design device drivers and application programs for usage of the multi-function sensors in order to detect risk factors. In this paper, we designed hardware circuit and implemented control program of the sensor part using PIC18F, in order to control and process the input and output data of multi-function sensors without device drivers and application programs. We confirmed the operation of multi-function sensor module to generate output data according to sensor operation.

  • PDF

Research of IP Based Monitoring System for Foul/Waste Water Disposal(Treatment) Plant (IP기반 하·폐수 처리장 모니터링에 관한 연구)

  • Kim, Dae-Ho;Kang, Yong-Sik;Lee, Joo-Young;Moon, Kyung-Hwan;Lim, Yun-Sik;Kim, Wan-Sik;Shin, Jae-Kwon;Gu, Ja-Wan;Kim, Jin-Tae;Cho, Ju-Phil;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.143-150
    • /
    • 2011
  • In this paper, we intend to implement system of the automation of foul/waste water disposal plant by using processed sensor data. We designed the model of communication system based on wireless indoor environment, implemented monitoring and control system based on IP. In the implemented monitoring system, it is possible to control and monitor through not only PC but also smart device(tablet PC, smart phone) anywhere, if WEB is connected.

SVC: Secure VANET-Assisted Remote Healthcare Monitoring System in Disaster Area

  • Liu, Xuefeng;Quan, Hanyu;Zhang, Yuqing;Zhao, Qianqian;Liu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1229-1248
    • /
    • 2016
  • With the feature of convenience and low cost, remote healthcare monitoring (RHM) has been extensively used in modern disease management to improve the quality of life. Due to the privacy of health data, it is of great importance to implement RHM based on a secure and dependable network. However, the network connectivity of existing RHM systems is unreliable in disaster area because of the unforeseeable damage to the communication infrastructure. To design a secure RHM system in disaster area, this paper presents a Secure VANET-Assisted Remote Healthcare Monitoring System (SVC) by utilizing the unique "store-carry-forward" transmission mode of vehicular ad hoc network (VANET). To improve the network performance, the VANET in SVC is designed to be a two-level network consisting of two kinds of vehicles. Specially, an innovative two-level key management model by mixing certificate-based cryptography and ID-based cryptography is customized to manage the trust of vehicles. In addition, the strong privacy of the health information including context privacy is taken into account in our scheme by combining searchable public-key encryption and broadcast techniques. Finally, comprehensive security and performance analysis demonstrate the scheme is secure and efficient.

Goal-driven Optimization Strategy for Energy and Performance-Aware Data Centers for Cloud-Based Wind Farm CMS

  • Elijorde, Frank;Kim, Sungho;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1362-1376
    • /
    • 2016
  • A cloud computing system can be characterized by the provision of resources in the form of services to third parties on a leased, usage-based basis, as well as the private infrastructures maintained and utilized by individual organizations. To attain the desired reliability and energy efficiency in a cloud data center, trade-offs need to be carried out between system performance and power consumption. Resolving these conflicting goals is often the major challenge encountered in the design of optimization strategies for cloud data centers. The work presented in this paper is directed towards the development of an Energy-efficient and Performance-aware Cloud System equipped with strategies for dynamic switching of optimization approach. Moreover, a platform is also provided for the deployment of a Wind Farm CMS (Condition Monitoring System) which allows ubiquitous access. Due to the geographically-dispersed nature of wind farms, the CMS can take advantage of the cloud's highly scalable architecture in order to keep a reliable and efficient operation capable of handling multiple simultaneous users and huge amount of monitoring data. Using the proposed cloud architecture, a Wind Farm CMS is deployed in a virtual platform to monitor and evaluate the aging conditions of the turbine's major components in concurrent, yet isolated working environments.