• Title/Summary/Keyword: Internet Classification

Search Result 1,070, Processing Time 0.031 seconds

Animal Sounds Classification Scheme Based on Multi-Feature Network with Mixed Datasets

  • Kim, Chung-Il;Cho, Yongjang;Jung, Seungwon;Rew, Jehyeok;Hwang, Eenjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3384-3398
    • /
    • 2020
  • In recent years, as the environment has become an important issue in dealing with food, energy, and urban development, diverse environment-related applications such as environmental monitoring and ecosystem management have emerged. In such applications, automatic classification of animals using video or sound is very useful in terms of cost and convenience. So far, many works have been done for animal sounds classification using artificial intelligence techniques such as a convolutional neural network. However, most of them have dealt only with the sound of a specific class of animals such as bird sounds or insect sounds. Due to this, they are not suitable for classifying various types of animal sounds. In this paper, we propose a sound classification scheme based on a multi-feature network for classifying sounds of multiple species of animals. To do that, we first collected multiple animal sound datasets and grouped them into classes. Then, we extracted their audio features by generating mixed records and used those features for training. To evaluate the effectiveness of our scheme, we constructed an animal sound classification model and performed various experiments. We report some of the results.

Drone Image Classification based on Convolutional Neural Networks (컨볼루션 신경망을 기반으로 한 드론 영상 분류)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.97-102
    • /
    • 2017
  • Recently deep learning techniques such as convolutional neural networks (CNN) have been introduced to classify high-resolution remote sensing data. In this paper, we investigated the possibility of applying CNN to crop classification of farmland images captured by drones. The farming area was divided into seven classes: rice field, sweet potato, red pepper, corn, sesame leaf, fruit tree, and vinyl greenhouse. We performed image pre-processing and normalization to apply CNN, and the accuracy of image classification was more than 98%. With the output of this study, it is expected that the transition from the existing image classification methods to the deep learning based image classification methods will be facilitated in a fast manner, and the possibility of success can be confirmed.

Classification Criteria for Reuse Library Systems (재사용 라이브러리 시스템에 대한 분류 기준)

  • Lee, Sung-Koo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.6
    • /
    • pp.41-50
    • /
    • 2006
  • In order to improve software development productivity and quality, reuse approaches and supporting library systems have been proposed. Library systems have applied various methods to classify, store, retrieve, and comprehend reusable components effectively. As the number of library systems grows, it is difficult to categorize, compare and analyze existing reuse libraries. In this paper, we present classification criteria for reuse library systems. A set of criteria is defined by integrating facet-based and attribute-based classification methods which encode the properties of a reusable component. In order to show the usefulness of the proposed classification criteria, representative library systems based on application domains, as well as component classification methods ore selected and reviewed. We then classify these library systems according to the proposed criteria.

  • PDF

Wireless Internet Service Classification using Data Mining (데이터 마이닝을 이용한 무선 인터넷 서비스 분류기법)

  • Lee, Seong-Jin;Song, Jong-Woo;Ahn, Soo-Han;Won, You-Jip;Chang, Jae-Sung
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.153-162
    • /
    • 2009
  • It is a challenging work for service operators to accurately classify different services, which runs on various wireless networks based upon numerous platforms. This works focuses on design and implementation of a classifier, which accurately classifies applications, which are captured horn WiBro Network. Notion of session is introduced for the classifier, instead of commonly used Flow to develop a classifier. Based on session information of given traffic, two classification algorithms are presented, Classification and Regression Tree and Support Vector Machine. Both algorithms are capable of classifying accurately and effectively with misclassification rate of 0.85%, and 0.94%, respectively. This work shows that classifier using CART provides ease of interpreting the result and implementation.

Attention Capsule Network for Aspect-Level Sentiment Classification

  • Deng, Yu;Lei, Hang;Li, Xiaoyu;Lin, Yiou;Cheng, Wangchi;Yang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1275-1292
    • /
    • 2021
  • As a fine-grained classification problem, aspect-level sentiment classification predicts the sentiment polarity for different aspects in context. To address this issue, researchers have widely used attention mechanisms to abstract the relationship between context and aspects. Still, it is difficult to effectively obtain a more profound semantic representation, and the strong correlation between local context features and the aspect-based sentiment is rarely considered. In this paper, a hybrid attention capsule network for aspect-level sentiment classification (ABASCap) was proposed. In this model, the multi-head self-attention was improved, and a context mask mechanism based on adjustable context window was proposed, so as to effectively obtain the internal association between aspects and context. Moreover, the dynamic routing algorithm and activation function in capsule network were optimized to meet the task requirements. Finally, sufficient experiments were conducted on three benchmark datasets in different domains. Compared with other baseline models, ABASCap achieved better classification results, and outperformed the state-of-the-art methods in this task after incorporating pre-training BERT.

Semantic-based Genetic Algorithm for Feature Selection (의미 기반 유전 알고리즘을 사용한 특징 선택)

  • Kim, Jung-Ho;In, Joo-Ho;Chae, Soo-Hoan
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, an optimal feature selection method considering sematic of features, which is preprocess of document classification is proposed. The feature selection is very important part on classification, which is composed of removing redundant features and selecting essential features. LSA (Latent Semantic Analysis) for considering meaning of the features is adopted. However, a supervised LSA which is suitable method for classification problems is used because the basic LSA is not specialized for feature selection. We also apply GA (Genetic Algorithm) to the features, which are obtained from supervised LSA to select better feature subset. Finally, we project documents onto new selected feature subset and classify them using specific classifier, SVM (Support Vector Machine). It is expected to get high performance and efficiency of classification by selecting optimal feature subset using the proposed hybrid method of supervised LSA and GA. Its efficiency is proved through experiments using internet news classification with low features.

Fixed IP-port based Application-Level Internet Traffic Classification (고정 IP-port 기반 응용 레벨 인터넷 트래픽 분석에 관한 연구)

  • Yoon, Sung-Ho;Park, Jun-Sang;Park, Jin-Wan;Lee, Sang-Woo;Kim, Myung-Sup
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.205-214
    • /
    • 2010
  • As network traffic is dramatically increasing due to the popularization of Internet, the need for application traffic classification becomes important for the effective use of network resources. In this paper, we present an application traffic classification method based on fixed IP-port information. A fixed IP-port is a {IP address, port number, transport protocol}triple dedicated to only one application, which is automatically collected from the behavior analysis of individual applications. We can classify the Internet traffic more accurately and quickly by simple packet header matching to the collected fixed IP-port information. Therefore, we can construct a lightweight, fast, and accurate real-time traffic classification system than other classification method. In this paper we propose a novel algorithm to extract the fixed IP-port information and the system architecture. Also we prove the feasibility and applicability of our proposed method by an acceptable experimental result.

Robust Face Recognition under Limited Training Sample Scenario using Linear Representation

  • Iqbal, Omer;Jadoon, Waqas;ur Rehman, Zia;Khan, Fiaz Gul;Nazir, Babar;Khan, Iftikhar Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3172-3193
    • /
    • 2018
  • Recently, several studies have shown that linear representation based approaches are very effective and efficient for image classification. One of these linear-representation-based approaches is the Collaborative representation (CR) method. The existing algorithms based on CR have two major problems that degrade their classification performance. First problem arises due to the limited number of available training samples. The large variations, caused by illumintion and expression changes, among query and training samples leads to poor classification performance. Second problem occurs when an image is partially noised (contiguous occlusion), as some part of the given image become corrupt the classification performance also degrades. We aim to extend the collaborative representation framework under limited training samples face recognition problem. Our proposed solution will generate virtual samples and intra-class variations from training data to model the variations effectively between query and training samples. For robust classification, the image patches have been utilized to compute representation to address partial occlusion as it leads to more accurate classification results. The proposed method computes representation based on local regions in the images as opposed to CR, which computes representation based on global solution involving entire images. Furthermore, the proposed solution also integrates the locality structure into CR, using Euclidian distance between the query and training samples. Intuitively, if the query sample can be represented by selecting its nearest neighbours, lie on a same linear subspace then the resulting representation will be more discriminate and accurately classify the query sample. Hence our proposed framework model the limited sample face recognition problem into sufficient training samples problem using virtual samples and intra-class variations, generated from training samples that will result in improved classification accuracy as evident from experimental results. Moreover, it compute representation based on local image patches for robust classification and is expected to greatly increase the classification performance for face recognition task.

A Parallel Deep Convolutional Neural Network for Alzheimer's disease classification on PET/CT brain images

  • Baydargil, Husnu Baris;Park, Jangsik;Kang, Do-Young;Kang, Hyun;Cho, Kook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3583-3597
    • /
    • 2020
  • In this paper, a parallel deep learning model using a convolutional neural network and a dilated convolutional neural network is proposed to classify Alzheimer's disease with high accuracy in PET/CT images. The developed model consists of two pipelines, a conventional CNN pipeline, and a dilated convolution pipeline. An input image is sent through both pipelines, and at the end of both pipelines, extracted features are concatenated and used for classifying Alzheimer's disease. Complimentary abilities of both networks provide better overall accuracy than single conventional CNNs in the dataset. Moreover, instead of performing binary classification, the proposed model performs three-class classification being Alzheimer's disease, mild cognitive impairment, and normal control. Using the data received from Dong-a University, the model performs classification detecting Alzheimer's disease with an accuracy of up to 95.51%.