• Title/Summary/Keyword: Internet Classification

Search Result 1,070, Processing Time 0.028 seconds

Automatic Construction of a Negative/positive Corpus and Emotional Classification using the Internet Emotional Sign (인터넷 감정기호를 이용한 긍정/부정 말뭉치 구축 및 감정분류 자동화)

  • Jang, Kyoungae;Park, Sanghyun;Kim, Woo-Je
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.512-521
    • /
    • 2015
  • Internet users purchase goods on the Internet and express their positive or negative emotions of the goods in product reviews. Analysis of the product reviews become critical data to both potential consumers and to the decision making of enterprises. Therefore, the importance of opinion mining techniques which derive opinions by analyzing meaningful data from large numbers of Internet reviews. Existing studies were mostly based on comments written in English, yet analysis in Korean has not actively been done. Unlike English, Korean has characteristics of complex adjectives and suffixes. Existing studies did not consider the characteristics of the Internet language. This study proposes an emotional classification method which increases the accuracy of emotional classification by analyzing the characteristics of the Internet language connoting feelings. We can classify positive and negative comments about products automatically using the Internet emoticon. Also we can check the validity of the proposed algorithm through the result of high precision, recall and coverage for the evaluation of this method.

Vocabulary Expansion Technique for Advertisement Classification

  • Jung, Jin-Yong;Lee, Jung-Hyun;Ha, Jong-Woo;Lee, Sang-Keun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1373-1387
    • /
    • 2012
  • Contextual advertising is an important revenue source for major service providers on the Web. Ads classification is one of main tasks in contextual advertising, and it is used to retrieve semantically relevant ads with respect to the content of web pages. However, it is difficult for traditional text classification methods to achieve satisfactory performance in ads classification due to scarce term features in ads. In this paper, we propose a novel ads classification method that handles the lack of term features for classifying ads with short text. The proposed method utilizes a vocabulary expansion technique using semantic associations among terms learned from large-scale search query logs. The evaluation results show that our methodology achieves 4.0% ~ 9.7% improvements in terms of the hierarchical f-measure over the baseline classifiers without vocabulary expansion.

Classification of Traffic Flows into QoS Classes by Unsupervised Learning and KNN Clustering

  • Zeng, Yi;Chen, Thomas M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.134-146
    • /
    • 2009
  • Traffic classification seeks to assign packet flows to an appropriate quality of service(QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

Classification of Behavioral Lexicon and Definition of Upper, Lower Body Structures in Animation Character

  • Hongsik Pak;Suhyeon Choi;Taegu Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.103-117
    • /
    • 2023
  • This study focuses on the behavioural lexical classification for extracting animation character actions and the analysis of the character's upper and lower body movements. The behaviour and state of characters in the animation industry are crucial, and digital technology is enhancing the industry's value. However, research on animation motion application technology and behavioural lexical classification is still lacking. Therefore, this study aims to classify the predicates enabling animation motion, differentiate the upper and lower body movements of characters, and apply the behavioural lexicon's motion data. The necessity of this research lies in the potential contributions of advanced character motion technology to various industrial fields, and the use of the behavioural lexicon to elucidate and repurpose character motion. The research method applies a grammatical, behavioural, and semantic predicate classification and behavioural motion analysis based on the character's upper and lower body movements.

Development of Internet Addiction Measurement Scales and Korean Internet Addiction Index (인터넷중독 측정도구와 한국형 인터넷중독지표의 개발)

  • Park, Jae-Sung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.3
    • /
    • pp.298-306
    • /
    • 2005
  • Objectives : To develop measurement scales of Internet addiction, and propose a Korean Internet Addiction Index (K-IAI) and classification criteria for Internet addiction from the threshold scores developed. Methods : The identification of the concept of 'Internet addiction' was based on the literature review. To select the scales, an exploratory factor analysis was applied. A construct validation was tested by a confirmatory factor analysis (CFA) with a structured equation model (SEM). In testing the validity of the classification criteria, ANOVA and non-recursive models with SEM were applied. Results : Out of 1,080 questionnaires distributed, 1,037 were returned,; a response rate of 96%. The Cronbach-$\alpha$ of all items was over 0.75. Using an exploratory factor analysis in the condition of a 6 factor constrain as the study model proposed, 23 of the initial 28 items were identified. In testing the discriminant and convergent validity of the selected 23 scales using CFA with SEM, the Internet addiction model explained about 93% of all variances of the data collected, and all the latent variables significantly explained the designated scales. A K-IAI was proposed using the T-scores of the sum of all factor averages. In the classification of users, the basic concept was a twostandard deviation approach of the K-IAI as the criteria of MMPI. The addiction group had a score ${\geq}70$ in the K-IAI, the pre-addiction group between ${\geq}50$ and <70, and the average user group <50. The Internet use times of the classified groups were statistically different in the ANOVA and multiple comparisons. Conclusions : The K-IAI is a reliable and valid instrument for measuring Internet addiction. Moreover, the taxonomy of the groups was also verified using various methods.

CNN-based Skip-Gram Method for Improving Classification Accuracy of Chinese Text

  • Xu, Wenhua;Huang, Hao;Zhang, Jie;Gu, Hao;Yang, Jie;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6080-6096
    • /
    • 2019
  • Text classification is one of the fundamental techniques in natural language processing. Numerous studies are based on text classification, such as news subject classification, question answering system classification, and movie review classification. Traditional text classification methods are used to extract features and then classify them. However, traditional methods are too complex to operate, and their accuracy is not sufficiently high. Recently, convolutional neural network (CNN) based one-hot method has been proposed in text classification to solve this problem. In this paper, we propose an improved method using CNN based skip-gram method for Chinese text classification and it conducts in Sogou news corpus. Experimental results indicate that CNN with the skip-gram model performs more efficiently than CNN-based one-hot method.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

Analysis of Public Sector Sharing Rate based on the IoT Device Classification Methodology (사물인터넷(IoT) 기기 분류 체계 기반 공공분야 점유율 분석)

  • Lee, Hyung-Woo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.65-72
    • /
    • 2022
  • The Internet of Things (IoT) provides data convergence and sharing functions, and IoT technology is the most fundamental core technology in creating new services by convergence of various cutting-edge technologies. However, there are different classification systems for the Internet of Things, and when it is limited to the domestic public sector, it is difficult to properly grasp the current status of which devices are installed and operated with what share, and systematic data or research The results are very difficult to find. Therefore, in this study, the relevance of the classification system for IoT devices was analyzed according to reality based on sales, shipments, and growth rate, and based on this, the actual share of IoT devices among domestic public institutions was analyzed in detail. The derived detailed analysis results are expected to be efficiently utilized in the process of selecting IoT devices for research and analysis to advance information protection technology such as responding to malicious code attacks on IoT devices, analyzing incidents, and strengthening security vulnerabilities.

Classification Method based on Graph Neural Network Model for Diagnosing IoT Device Fault (사물인터넷 기기 고장 진단을 위한 그래프 신경망 모델 기반 분류 방법)

  • Kim, Jin-Young;Seon, Joonho;Yoon, Sung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.9-14
    • /
    • 2022
  • In the IoT(internet of things) where various devices can be connected, failure of essential devices may lead to a lot of economic and life losses. For reducing the losses, fault diagnosis techniques have been considered an essential part of IoT. In this paper, the method based on a graph neural network is proposed for determining fault and classifying types by extracting features from vibration data of systems. For training of the deep learning model, fault dataset are used as input data obtained from the CWRU(case western reserve university). To validate the classification performance of the proposed model, a conventional CNN(convolutional neural networks)-based fault classification model is compared with the proposed model. From the simulation results, it was confirmed that the classification performance of the proposed model outweighed the conventional model by up to 5% in the unevenly distributed data. The classification runtime can be improved by lightweight the proposed model in future works.

Performance Improvement of Signature-based Traffic Classification System by Optimizing the Search Space (탐색공간 최적화를 통한 시그니쳐기반 트래픽 분석 시스템 성능향상)

  • Park, Jun-Sang;Yoon, Sung-Ho;Kim, Myung-Sup
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.89-99
    • /
    • 2011
  • The payload signature-based traffic classification system has to deal with large amount of traffic data, as the number of internet-based applications and network traffic continue to grow. While a number of pattern-matching algorithms have been proposed to improve processing speedin the literature, the performance of pattern matching algorithms is restrictive and depends on the features of its input data. In this paper, we studied how to optimize the search space in order to improve the processing speed of the payload signature-based traffic classification system. Also, the feasibility of our design choices was proved via experimental evaluation on our campus traffic trace.