프로그래밍 교육에 있어 학습자의 학업 성취도를 향상시킬 수 있는 중요한 요인 중의 하나는 다양한 형태의 과제를 학습자에게 부여하여 문제 해결 연습 기회를 많이 제공해 주는 것이다. 그러나 프로그래밍 과제 평가는 대부분 수작업으로 행해지고 있으면 정확한 평가 방법을 제공해 줄 수 있는 자동화된 도구 또한 결여되어 있는 게 현실이다. 이러한 제한된 환경 하에서 과제 평가는 교수자들에게 많은 시간과 노력을 요구하게 되어 다양한 형태의 과제 부여는 현실적으로 어려움이 있다. 이러한 문제를 극복하기 위해서는 교수자가 효율적이고 일괄적인 방법으로 과제를 쉽게 평가할 수 있고, 학습자들 상호간의 프로그램 소스코드의 표절 또한 용이하게 검사할 수 있는 자동화된 프로그래밍 평가 시스템이 필요하다. 따라서 본 논문에서는 교수자가 프로그램의 성능을 자동적인 방법으로 평가할 수 있을 뿐만 아니라 적절한 피드백과 함께 프로그램의 스타일과 표절에 대한 검사 또한 용이하게 수행할 수 있는 웹을 기반으로 한 프로그래밍 과제 평가 시스템을 설계하고 구현한다.
One of the purposes of Information Technology (IT) is to support human response to natural and social problems such as natural disasters and spread of disease, and to improve the quality of human life. Recent climate change has happened worldwide, natural disasters threaten the quality of life, and human safety is no longer guaranteed. IT must be able to support tasks related to disaster response, and more importantly, it should be used to predict and minimize future damage. In South Korea, the data related to the damage is checked out by each local government and then federal government aggregates it. This data is included in disaster reports that the federal government discloses by disaster case, but it is difficult to obtain raw data of the damage even for research purposes. In order to obtain data, information extraction may be applied to disaster reports. In the field of information extraction, most of the extraction targets are web documents, commercial reports, SNS text, and so on. There is little research on information extraction for government disaster reports. They are mostly text, but the structure of each sentence is very different from that of news articles and commercial reports. The features of the government disaster report should be carefully considered. In this paper, information extraction method for South Korea government reports in the word format is presented. This method is based on patterns and dictionaries and provides some additional ideas for tokenizing the damage representation of the text. The experiment result is F1 score of 80.2 on the test set. This is close to cutting-edge information extraction performance before applying the recent deep learning algorithms.
국내 전기차 (EV: Electric Vehicle) 시장이 성장함에 따라, 빠르게 증가하는 EV 충전 수요에 대응하기 위한 충전설비의 확충이 요구되고 있다. 이와 관련하여, 종합적인 설비 계획을 수립하기 위해서는 미래 시점의 충전 수요량을 예측하고 이를 바탕으로 전력설비 부하에 미치는 영향을 체계적으로 분석하는 것이 필요하다. 본 논문에서는 한국전력공사의 EV 충전 데이터를 이용하여 충전소 단위의 일별최대부하를 예측하는 LSTM(Long Short-Term Memory) 신경망 모델을 설계 및 개발한다. 이를 위해, 먼저 데이터 전처리 및 이상치 제거를 통해 정제된 데이터를 얻는다. 다음으로, 충전소 단위의 일별 특징들을 추출하여 훈련 데이터 집합을 구성하여 일별 최대 전력부하 예측 모델을 학습시킨다. 마지막으로 충전소 유형 별 테스트 집합을 이용한 성능 분석을 통해 예측 모델을 검증하고 이의 한계점을 논의한다.
최근 소프트웨어가 다양한 분야에 적용되면서 소프트웨어 규모와 프로그램 코드의 복잡성이 증가하였다. 이에 따라 소프트웨어 버그의 존재가 불가피하게 발생하고, 소프트웨어 유지보수의 비용이 증가하고 있다. 오픈 소스 프로젝트에서는 개발자가 할당 받은 버그 리포트를 해결할 때 많은 디버깅 시간을 소요한다. 이러한 문제를 해결하기 위해 본 논문은 SeqGAN 알고리즘을 소프트웨어 버그 정정에 적용한다. 자세히는 SeqGAN 알고리즘을 활용하여 프로그램 소스코드를 학습한다. 학습과정에서 공개된 유사 소스코드도 같이 활용한다. 생성된 후보 패치에 대한 적합성을 평가 하기 위해 적합도 함수를 적용하고, 주어진 모든 테스트 케이스를 통과하면 소프트웨어 버그 정정이 되었다고 본다. 제안한 모델의 효율성을 평가하기 위해 베이스라인과 비교하였으며, 제안한 모델이 더 잘 정정하는 것을 보였다.
검색엔진을 사용하는 이용자의 정보 즉 선호도에 따른 지속적인 피드백으로 검색 결과의 랭킹을 향상시켜 유연한 검색이 가능하게 하는 방법에는 학습된 인공 신경망을 이용한다. 인공 신경망 학습은 신경망이 여러 다른 검색어로 학습된 후 다른 사용자들이 과거에 실제 검색했던 결과를 좀 더 반영하기 위한 것이다. 가중치의 지속적인 변경을 위해서는 네트워크에서 역방향으로 움직이면서 가중치를 변경하는 역전파 알고리즘을 이용하여 학습한다. 그러나 이러한 학습은 초기에는 훈련데이터에 적합한 성능을 보이나 학습의 횟수가 증가할수록 점점 과대적합되는 것을 알 수 있다. 따라서 본 논문에서는 최적화해야 할 개체가 많을 때 강한 장점을 가지고 있는 유전자 알고리즘을 적용하여 검색어에 관련성이 높은 페이지들 유연하게 랭킹하기 위해 URL리스트를 개체로 랜덤으로 선택하여 학습하는 기법을 제안한다.
컴퓨터의 보급이 늘어나면서 여러 분야에서 컴퓨터를 유용하게 사용하고 있다. 교육 분야 중 특히 과학을 학습하기 위한 자료로 멀티미디어를 사용하는 것들이 많다. 최근에는 학습자의 흥미와 관심을 이끌기 위해 자바나 플래시를 사용한 웹 기반 자료들이 증가하고 있다. 이렇게 컴퓨터 분양의 표현, 저장, 계산 및 통신 기술의 발달로 새로운 교육환경이 제공되고 있다. 특히 인터넷과 가상현실 기술은 교육환경에서 큰 변화를 가져올 것으로 판단되고 있다. 가상 현실 기법으로 가장 큰 특징은 실시간 상호작용이다. 최근의 연구에 의하면 학습자의 참여를 증가시키기 위해 화학 교육에서 가상현실 시뮬레이션을 사용하고 있으며 그 결과 화학의 기본 개념에 대한 이해가 진작되었고 실험실활동을 보강할 수 있다고 보고되었다. 이에 본 연구에서는 화학 교육에서 가상현실 기법의 활용 방안에 대해 고찰하였다.
모국어나 외국어를 습득할 때 언어 처리의 '속도' 및 '정확도'가 적절하지 않으면 언어발달이 지연되거나 외국어 학습에 어려움을 보이게 되며, 실제 이를 통한 의사소통 상황에서 어려움을 겪게 된다. 따라서, 언어 학습 능력을 평가할 때 단순히 언어 처리의 정확도만이 아닌 '속도'와 '정확도'를 동시에 측정하는 것이 중요하며, 학습에 있어서도 이러한 처리의 효율성을 향상 시키는 것이 필요하다. 우리는 음성 및 시각 자극에 대한 '반응속도 측정기 플랫폼'을 개발함으로써 효율적인 언어 수행 능력을 평가하고 학습 향상에 적용하고자 하였다. 이 글에서는 먼저 이 플랫폼의 구성 및 내용 그리고 온라인 컨텐츠 구성 등의 개발 과정에 대하여 제시하였다. 또한, 이 플랫폼의 실제 적용 가능성을 검토하기 위하여 10명의 성인에게 '청각', '시각' 그리고 '시청각'의 3 가지 자극 조건을 제시하고, 각 조건에서 5회 이상 자극에 반응을 보이도록 하였다. 그리고 1회와 5회 반응의 반응 속도 및 정확도를 측정하여 비교하여 보았다. 이러한 결과 이 플랫폼이 정도의 차이는 있으나 자극의 종류에 상관없이 보다 빠르고 정확하게 언어를 처리할 수 있도록 능력을 향상시키는데 도움을 주고 있음을 알 수 있었다.
광학시스템에서 가장 중요한 기술 중의 하나는 고속으로 이동하는 표적을 지속적으로 추적할 수 있는 고속 자동 표적 추적 시스템이다. 본 논문은 원거리 소형 표적에 대해서 고속으로 이동하는 표적에 대해서 급격한 형태 변화에도 강인한 상관 트렉커 기반에 자동 표적 추적 시스템을 설계한다. 본 논문은 IR 영상에서 $3{\times}3$ 이상의 표적에 대해서 4ms 내에 고속으로 표적을 추적하기 위한 커널 함수와 correlation filter 설계 최적화 방법을 제시하고, 이를 VxWorks와 같은 실시간 O/S 하에서 짐벌과 함께 연동하여 시험을 수행한다. 제안된 알고리즘의 성능 검증을 위해서 실제로 복잡환경에서 기동하는 드론, 비행체를 대상으로 IR 카메라로 영상을 획득한 후 이를 실시간 보드상에서 시험을 진행한 결과 응답시간 4ms이하에서 약 98% 추적 성공률를 보였다.
대량의 로그 자료로부터 가장 적합한 정보를 추출하기 위한 방법 중 귀납 추리를 이용한 방법이 있다. 본 논문에서는 디지털 포렌식 분석에서 침입 흔적 로그의 순위를 결정하기 위하여 귀납 추리를 이용한 방법 중 분류에 있어서 우수한 SVM(Support Vector Machine)을 이용한다. 이를 위하여, 훈련 로그 집합의 로그 데이터를 침입 흔적 로그와 정상 로그로 분류한다. 분류된 각 집합으로부터 연관 단어를 추출하여 연관 단어 사전을 생성하고, 생성된 사전을 기반으로 각 로그를 벡터로 표현한다. 다음으로, 벡터로 표현된 로그를 SVM을 이용하여 학습하고, 학습된 로그 집합을 기반으로 테스트 로그 집합을 정상 로그와 침입 흔적 로그로 분류한다. 최종적으로, 포렌식 분석가에게 침입 흔적 로그를 추천하기 위하여 침입 흔적 로그의 추천 순위를 결정한다.
최근 각종 사업 분야에서 기업들은 기존 메신저 플랫폼에 인공지능을 더하여 다양한 환경을 대상으로 챗봇 서비스 지원에 주력하고 있다. 취업알선 분야의 기관에서도 취업상담 서비스 품질 제고와 상담 인력 해소를 위해 챗봇 서비스를 요구한다. 일반적인 텍스트 기반 챗봇은 입력된 사용자 문장을 학습된 문장으로 분류하여 적합한 답변을 사용자에게 제공한다. 최근 소셜 네트워크 서비스의 활성화 영향으로 챗봇에 입력되는 사용자 문장은 단문으로 입력되는 경향이 있다. 따라서 단문 분류의 성능향상은 챗봇 서비스의 성능향상에 기여할 수 있다. 본 연구는 취업알선 챗봇을 위한 단문 분류 강화를 위해 기존 연구의 개념 정보뿐만 아니라 번역문 정보를 활용하는 방법인 T-EBOW (Translation-Extended Bag Of Words)를 제안한다. T-EBOW를 기계학습 분류 모델에 적용한 단문 분류의 성능은 기존 방법에 비해 우수한 성능 평가 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.