• Title/Summary/Keyword: Internet Based Learning

Search Result 1,585, Processing Time 0.034 seconds

Air Threat Evaluation System using Fuzzy-Bayesian Network based on Information Fusion (정보 융합 기반 퍼지-베이지안 네트워크 공중 위협평가 방법)

  • Yun, Jongmin;Choi, Bomin;Han, Myung-Mook;Kim, Su-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2012
  • Threat Evaluation(TE) which has air intelligence attained by identifying friend or foe evaluates the target's threat degree, so it provides information to Weapon Assignment(WA) step. Most of TE data are passed by sensor measured values, but existing techniques(fuzzy, bayesian network, and so on) have many weaknesses that erroneous linkages and missing data may fall into confusion in decision making. Therefore we need to efficient Threat Evaluation system that can refine various sensor data's linkages and calculate reliable threat values under unpredictable war situations. In this paper, we suggest new threat evaluation system based on information fusion JDL model, and it is principle that combine fuzzy which is favorable to refine ambiguous relationships with bayesian network useful to inference battled situation having insufficient evidence and to use learning algorithm. Finally, the system's performance by getting threat evaluation on an air defense scenario is presented.

Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network

  • Shang, Jiaze;An, Weipeng;Liu, Yu;Han, Bang;Guo, Yaodan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1086-1103
    • /
    • 2020
  • The automatic identification and classification of image-based weld defects is a difficult task due to the complex texture of the X-ray images of the weld defect. Several depth learning methods for automatically identifying welds were proposed and tested. In this work, four different depth convolutional neural networks were evaluated and compared on the 1631 image set. The concavity, undercut, bar defects, circular defects, unfused defects and incomplete penetration in the weld image 6 different types of defects are classified. Another contribution of this paper is to train a CNN model "RayNet" for the dataset from scratch. In the experiment part, the parameters of convolution operation are compared and analyzed, in which the experimental part performs a comparative analysis of various parameters in the convolution operation, compares the size of the input image, gives the classification results for each defect, and finally shows the partial feature map during feature extraction with the classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy of other existing fine-tuned models, and even improves the classification accuracy compared with the traditional image processing methods, and also proves that the model trained from scratch also has a good performance on small-scale data sets. Our proposed method can assist the evaluators in classifying pipeline welding defects.

The Development and Application of Web-Based Learning System for Correct Use of Internet Communication Words in Elementary Schools ("바른말 고운말" 교실 웹기반 학습시스템 개발 및 적용)

  • Yoon, Hee-Soo;Kim, Dong-Ho
    • Journal of The Korean Association of Information Education
    • /
    • v.8 no.2
    • /
    • pp.191-201
    • /
    • 2004
  • In accordance with wide spread of personal computer and the expansion of network access, the use of internet has been popular and communication by text message is much more normal than that of voice and image. Accordingly, the side effect of communication language brings about gap between diverse social class, the isolation of communication between generations, abusive expressions, obstacles of juvenile mental development and so on. It appears by the form of slang and vulgar word and has a negative effect on education of mother tongue and usage of children's real language. To deal with these problems, we developed new web-based education system through the analysis of learners' requirement; "Barun Mal, Goeun Mal class". So we verified its efficiency to apply to real class. We also found that this system increased the learners' interest and educational effectiveness. Also, this system contributed to the proper use of language.

  • PDF

A Science Instrument Management System for Elementary Schools (초등학교 과학 교구 관리시스템)

  • Jo, Se-Hyun;Jun, Woo-Chun
    • Journal of The Korean Association of Information Education
    • /
    • v.8 no.1
    • /
    • pp.67-77
    • /
    • 2004
  • Recently, the rapid progress of internet technology stirs the widespread development in the educational areas. Internet has been exploited as an effective means to support school information management as well as to supplement traditional off-line teaching-learning methods. Science instruments are very important tools for science-related courses in the elementary schools. However, managing science instruments effectively has not been concerned greatly so far. Only off-line management systems were presented. In this paper, a Web-based science instrument management system is proposed. The proposed Web-based science instrument management system has the following characteristics. First, an extensive model for science instrument management is presented. The proposed model can be used as a standard model for effective management. Second, the system can provide inventory information as well as standard instrument requirements to teachers anytime anywhere. The system helps teachers make decisions on procurement plan. Finally, the user interface is designed to support easy navigation and simple use.

  • PDF

No-reference Image Blur Assessment Based on Multi-scale Spatial Local Features

  • Sun, Chenchen;Cui, Ziguan;Gan, Zongliang;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4060-4079
    • /
    • 2020
  • Blur is an important type of image distortion. How to evaluate the quality of blurred image accurately and efficiently is a research hotspot in the field of image processing in recent years. Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this paper presents a no-reference image blur/sharpness assessment method based on multi-scale local features in the spatial domain. First, considering various content has different sensitivity to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, the Gaussian scale space of the image is constructed, and the categorized contrast features between the original image and the Gaussian scale space images are calculated to express the blur degree of different image contents. To simulate the impact of viewing distance on blur distortion, the distribution characteristics of local maximum gradient of multi-resolution images were also calculated in the spatial domain. Finally, the image blur assessment model is obtained by fusing all features and learning the mapping from features to quality scores by support vector regression (SVR). Performance of the proposed method is evaluated on four synthetically blurred databases and one real blurred database. The experimental results demonstrate that our method can produce quality scores more consistent with subjective evaluations than other methods, especially for real burred images.

An Outlier Cluster Detection Technique for Real-time Network Intrusion Detection Systems (실시간 네트워크 침입탐지 시스템을 위한 아웃라이어 클러스터 검출 기법)

  • Chang, Jae-Young;Park, Jong-Myoung;Kim, Han-Joon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.43-53
    • /
    • 2007
  • Intrusion detection system(IDS) has recently evolved while combining signature-based detection approach with anomaly detection approach. Although signature-based IDS tools have been commonly used by utilizing machine learning algorithms, they only detect network intrusions with already known patterns, Ideal IDS tools should always keep the signature database of your detection system up-to-date. The system needs to generate the signatures to detect new possible attacks while monitoring and analyzing incoming network data. In this paper, we propose a new outlier cluster detection algorithm with density (or influence) function, Our method assumes that an outlier is a kind of cluster with similar instances instead of a single object in the context of network intrusion, Through extensive experiments using KDD 1999 Cup Intrusion Detection dataset. we show that the proposed method outperform the conventional outlier detection method using Euclidean distance function, specially when attacks occurs frequently.

  • PDF

Detecting code reuse attack using RNN (RNN을 이용한 코드 재사용 공격 탐지 방법 연구)

  • Kim, Jin-sub;Moon, Jong-sub
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.15-23
    • /
    • 2018
  • A code reuse attack is an attack technique that can execute arbitrary code without injecting code directly into the stack by combining executable code fragments existing in program memory and executing them continuously. ROP(Return-Oriented Programming) attack is typical type of code reuse attack and serveral defense techniques have been proposed to deal with this. However, since existing methods use Rule-based method to detect attacks based on specific rules, there is a limitation that ROP attacks that do not correspond to previously defined rules can not be detected. In this paper, we introduce a method to detect ROP attack by learning command pattern used in ROP attack code using RNN(Recurrent Neural Network). We also show that the proposed method effectively detects ROP attacks by measuring False Positive Ratio, False Negative Ratio, and Accuracy for normal code and ROP attack code discrimination.

An Efficient Optimization Technique for Node Clustering in VANETs Using Gray Wolf Optimization

  • Khan, Muhammad Fahad;Aadil, Farhan;Maqsood, Muazzam;Khan, Salabat;Bukhari, Bilal Haider
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4228-4247
    • /
    • 2018
  • Many methods have been developed for the vehicles to create clusters in vehicular ad hoc networks (VANETs). Usually, nodes are vehicles in the VANETs, and they are dynamic in nature. Clusters of vehicles are made for making the communication between the network nodes. Cluster Heads (CHs) are selected in each cluster for managing the whole cluster. This CH maintains the communication in the same cluster and with outside the other cluster. The lifetime of the cluster should be longer for increasing the performance of the network. Meanwhile, lesser the CH's in the network also lead to efficient communication in the VANETs. In this paper, a novel algorithm for clustering which is based on the social behavior of Gray Wolf Optimization (GWO) for VANET named as Intelligent Clustering using Gray Wolf Optimization (ICGWO) is proposed. This clustering based algorithm provides the optimized solution for smooth and robust communication in the VANETs. The key parameters of proposed algorithm are grid size, load balance factor (LBF), the speed of the nodes, directions and transmission range. The ICGWO is compared with the well-known meta-heuristics, Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) for clustering in VANETs. Experiments are performed by varying the key parameters of the ICGWO, for measuring the effectiveness of the proposed algorithm. These parameters include grid sizes, transmission ranges, and a number of nodes. The effectiveness of the proposed algorithm is evaluated in terms of optimization of number of cluster with respect to transmission range, grid size and number of nodes. ICGWO selects the 10% of the nodes as CHs where as CLPSO and MOPSO selects the 13% and 14% respectively.

IoT-based Water Tank Management System for Real-time Monitoring and Controling (실시간 관측 및 제어가 가능한 IoT 저수조 관리 시스템)

  • Kwon, Min-Seo;Gim, U-Ju;Lee, Jae-Jun;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.217-223
    • /
    • 2018
  • Real-time controllability has been a major challenge that should be addressed to ascertain the practical usage of the management systems. In this regards, for the first time, we proposed and implemented an IoT(Internet of Things)-based water tank system to improve convenience and efficiency. The reservoir can be effectively controlled by notifying the user if the condition of the reservoir is unstable. The proposed system consists of embedded H/W unit for sensor data measuring and controling, application S/W for deployment of management server via web and mobile app, and efficient database structure for managing and monitoring statistics. And machine learning algorithms can be applied for further improvements of efficiency in practice.

Single Low-Light Ghost-Free Image Enhancement via Deep Retinex Model

  • Liu, Yan;Lv, Bingxue;Wang, Jingwen;Huang, Wei;Qiu, Tiantian;Chen, Yunzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1814-1828
    • /
    • 2021
  • Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under scotopic vision illumination conditions. The degradation includes low brightness, low contrast, and outstanding noise, which would seriously affect the vision of the human eye recognition ability and subsequent image processing. In this paper, we propose an approach based on deep learning and Retinex theory to enhance the low-light image, which includes image decomposition, illumination prediction, image reconstruction, and image optimization. The first three parts can reconstruct the enhanced image that suffers from low-resolution. To reduce the noise of the enhanced image and improve the image quality, a super-resolution algorithm based on the Laplacian pyramid network is introduced to optimize the image. The Laplacian pyramid network can improve the resolution of the enhanced image through multiple feature extraction and deconvolution operations. Furthermore, a combination loss function is explored in the network training stage to improve the efficiency of the algorithm. Extensive experiments and comprehensive evaluations demonstrate the strength of the proposed method, the result is closer to the real-world scene in lightness, color, and details. Besides, experiments also demonstrate that the proposed method with the single low-light image can achieve the same effect as multi-exposure image fusion algorithm and no ghost is introduced.