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Abstract 
 

The automatic identification and classification of image-based weld defects is a difficult task 

due to the complex texture of the X-ray images of the weld defect. Several depth learning 
methods for automatically identifying welds were proposed and tested. In this work, four 

different depth convolutional neural networks were evaluated and compared on the 1631 

image set. The concavity, undercut, bar defects, circular defects, unfused defects and 
incomplete penetration in the weld image 6 different types of defects are classified. Another 

contribution of this paper is to train a CNN model "RayNet" for the dataset from scratch. In the 

experiment part, the parameters of convolution operation are compared and analyzed, in which 

the experimental part performs a comparative analysis of various parameters in the 
convolution operation, compares the size of the input image, gives the classification results for 

each defect, and finally shows the partial feature map during feature extraction with the 

classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy 
of other existing fine-tuned models, and even improves the classification accuracy compared 

with the traditional image processing methods, and also proves that the model trained from 

scratch also has a good performance on small-scale data sets. Our proposed method can assist 
the evaluators in classifying pipeline welding defects. 
 

 

Keywords: pipeline x-ray welding image; automatic identification; feature extraction; 

convolution neural network; convolution operation 
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1. Introduction 

Welding, as the basic process of connecting components, has been widely used in the 

industrial production of railway bridges, aerospace, petroleum equipment manufacturing [1]. 
In the manufacturing process of welded special steel pipes for oil transmission, various 

welding defects such as concavity, undercut, bar defects, circular defects, unfused defects and 

incomplete penetration are unavoidable due to the constraints of production environment and 

production process. The description of pipeline welding defects is shown in Fig. 1 [2]. 
Therefore, it is necessary to detect and identify the welding defects of oil pipelines. X-ray 

nondestructive testing (NDT) is a testing method which uses X-ray to penetrate metal 

materials, and because of the different absorption and scattering effects of materials on the 
rays, the film has different photosensitivity and forms images with different blackness on the 

negative film, according to which the defect inside materials can be judged [3][4]. However, 

due to the features of X-ray weld film itself, the extracted X-ray image has many problems, 
such as noise, low contrast, large background fluctuations, complex weld image texture,, and 

blurred weld edges, which make the automatic extraction of welding defects still a major 

problem [5]. And even if the defects are extracted, because the classification standard of 

welding defects has not been quantified, the automatic identification and classification of 
defects are also major problems. The traditional detection method relies on manual evaluation, 

This evaluation method is affected by the equipment, environment, working time and personal 

experience, and for the evaluators, not only the workload is large, but also the efficiency is low. 
It is also easy to cause inconsistent evaluation results due to the difference of personal 

experience, thus resulting in missing judgment and misjudgment of defects. 

 
Fig. 1. Description of pipeline welding defects 

At present, the detection method has received attention from many countries and enterprises 

that digital image processing technology is used to process and analyze the pipeline welding 
images, and then determine whether there are defects in the pipeline. The ultimate goal of 

image processing is to extract regions of interest and analyze them accordingly [6]. In this 

process, we should overcome the shortcomings of image noise, a large amount of useless 

information and low gray contrast. There are different algorithms and processing methods for 
image processing technology in various industries, but the basic method is to perform image 
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enhancement after pre-processing for noise reduction, and then determine the threshold value 
of binary segmentation, use this threshold value to binarize the image, and separate the target 

region from other parts [7][8][9][10]. The target area is marked by computer and the 

characteristic parameters, such as area, perimeter, circularity, and gray level that can describe 

it, are extracted. Finally, the whole target is analyzed or identified by using the characteristic 
parameters to achieve the desired purpose. The traditional identification methods are all 

identification methods that rely on feature engineering, while it is very difficult to extract 

features accurately and effectively, and it is difficult to determine many feature types such as 
set features and texture features [11][12][13]. This leads to that the identification accuracy 

cannot be further improved, and artificial feature engineering needs artificial determination of 

features, which requires a lot of manual work, thus significantly reducing the degree of 
automation of defect identification. This bottleneck faced puts forward requirements for us to 

break through the traditional methods and find new defect identification methods. 

The essence of deep learning is to learn the deep essential features of the given data from the 

large-scale data  through deep learning network structure [14][15][16], so as to improve the 

accuracy of classification and identification. LeCun et al. defines the basic structure of modern 

convolution neural network, in which alternating convolution layers and pooling layers are 
considered to be effective in extracting translation invariant features of input images [17]. 

Other applications based on convolutional neural networks, including face identification and 

gesture identification, have also been developed. Convolution neural networks require a large 
data set in image classification. However, it is difficult to obtain X-ray photographs of large 

defects in the X-ray field. In reference [18], the author trained CNN models with less data to 

have obtained higher accuracy rates. Due to the emergence of high-performance GPUs, the 
CNN model has been developed faster and its training time has been shortened more than 

before. 

The rest of the paper are as follows: Section 2 introduces the previous applications of digital 

image processing techniques in pipeline welding defect identification and analyzes these 

methods in depth. Section 3 describes the application of deep learning methods in welding 
defect identification. Section 4 gives the experimental analysis and comparison. Section 5 

draws the final conclusions. 

2. Related Work 

In this Section, we introduced the latest research background of traditional pipeline welding d

efect identification, and analyzed its advantages and disadvantages, which enlightens the appl
ication of convolution neural network in welding defect identification. As early as 1992, Lei 

et al. proposed an unsupervised model-based image segmentation technique for X-ray CT [19],

 which utilizes a finite mixture distribution and an underlying Gaussian random field as a ran

dom image model to classify images by a Bayesian classifier. Abdelhak et al. first used homo
morphic filter to preprocess the images [20]. Then, a global threshold method was used to ext

ract the weld on the whole image. When the welding area was roughly determined, the local t

hreshold method was used as the final threshold to extract the welding defects. This method c
an extract some relatively obvious defects effectively to a certain extent, but the effect of extr

acting defects of complex shape is not obvious. Malarvel et al. proposed an improved anisotr

opic diffusion model based on X-ray pipe weld images [21], which considers the adaptive thr
eshold parameters in the local gray probability value and diffusion coefficient function to ach

ieve the meaning of adjusting the low edge gradient in the noise image feature space. The per

formance of the model was evaluated using indices such as mean square error, signal-to-noise
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 ratio, and entropy, and the reliability of the model was verified. Nafaa et al. proposed a comp
uter-aided diagnosis software for welding defects and proposed an unsupervised classifier bas

ed on a finite mixture model of Multivariate Generalized Gaussian Distribution(MGGD) [22].

 The parameters of the hybrid model based on Non-zero Mean MGGD were estimated by usi

ng an expectation–maximization (EM) algorithm, and the classification accuracy was over 9
6%. Shao et al. used a defect segmentation algorithm with low threshold to segment the poten

tial defects of the image [23], and used an improved Hough transform to track the center of gr

avity of the potential defects in the image sequence and removed the potential defects that co
uld not be tracked as pseudo-defects. This method has the advantages of fast speed, strong ad

aptability, good stability and so on. However, these are traditional image processing methods,

 which need to go through the traditional denoising, image enhancement, image segmentation
 and other operations to get the defects in the weld. After extraction, it still needs to be judged

 manually, which is quite backward for the current industrial level. 

Although these methods have achieved high classification accuracy, the generalization 

performance of these methods is very low, different results may be obtained for different 

welding defects, and some small defects in the images may be missed after various image 

processing methods are used, and these shortcomings are unavoidable in these approaches. 

At present, the convolution neural network has been applied in many image analysis, which 
can avoid these shortcomings. Ciocca et al. used food images in a variety of CNN models and 

compared the classification accuracy of these models [24]. C. Spampineto et al. evaluated the 

age of bones with convolutional neural networks and obtained high assessment accuracy [18]. 

The experiment was operated on 1391 photographs of the palm, which was unprecedented in 
bone age assessment. At the same time, Al-antari et al. designed a breast cancer computer 

diagnosis system for convolution training on 410 mammograms [25], and the detection 

accuracy of this system reached 98.96%, which was superior to the latest traditional deep 
learning methods. The applications in medical X-ray images also include the use of multiple 

convolution neural networks to classify chest images including 14 diseases and pathologies, 

and the classification accuracy was also 81.6%, which was unprecedented in medical image 
classification [26]. The application of X-ray image in deep learning is also reflected in the 

detection of voids in crystal chips, and Van Veenhuizen trained on the convolutional god 

network with 219 crystal X-ray images and obtained a high identification rate [27], which 

proved that small data sets can also perform well in convolutional neural networks. Jiwang 
Jiang et al. obtained cross-sectional images of bituminous hybrid materials using X-ray 

Computed Tomography (CT) method and trained them in a CNN network model [28], and 

also obtained good classification results. As far as we know, convolution neural network has 
not been applied to identify welding defects in oil pipelines. However, machine learning 

methods have been applied in defect recognition and Valavanis et al. used local threshold 

method to segment the image [29], and then used the existing multi-classification support 
vector machine and neural network classifier to classify the defects, and the experiments 

showed that the computation time can be significantly reduced without affecting the overall 

accuracy. Zapata et al. designed an automatic detection, identification and classification 

system of welding defects based on an artificial neural network and an adaptive network-based 
fuzzy inference system [30]. The system can identify four main types of welding defects. The 

accuracy of the neural network prediction is 78.9%, and it can be seen that the accuracy is 

relatively low. Some real-time detection methods have also been applied to the detection of 
welding defects. Zou et al. proposed a real-time detection method for welding defects based on 

Kalman filter [31]. Kalman filter uses to detect the trajectory continuity of defects in image 



1090                                Shang et al.: Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network 

sequences to identify real defects, but this method has great limitations and cannot identify the 
discontinuous circular defects. 

At present, the more popular methods in deep learning are: using the ready-made to train 

directly on the target dataset, improving the existing model, and training it. For example, 

Pranata et al. trained computed tomography images of calcaneal fractures using two readily 

available convolutional neural network structures and finally obtained a classification 
accuracy of 98% [32]. Nasr-Esfahani et al. trained with the CNN model in X-ray angiography 

images for the purpose of detecting coronary heart disease [33]. 

In this paper, our contributions include: first training on pipeline weld images using 

convolutional neural networks and identification and classification of defects in welds. Firstly, 

the dataset is trained in the existing CNN model. Secondly, it is fine-tuned based on the 
existing model, and the classification accuracy is improved by training the data in the 

fine-tuned model. Finally, we train a unique model for the welding dataset from scratch, which 

is able to automatically locate the defect positions on welding images and enable accurate 

identification and classification. This is unprecedented. 

3. Proposed Method 

In this Section, we proposed three different methods for detecting welding defects in oil 

pipelines:(1) using transfer learning methods, that is, classifying images using existing CNN 

models, which does not require any model adaptation; (2) fine-tuning the existing CNN model 

to adapt the model to our pre-trained dataset, and the role of fine-tuning is to update the 
weights in the network, which has better results compared to the first one; and (3) starting 

training a CNN model against the heavy head of our existing dataset. The three models have 

similar structures and consist of two consecutive networks: (1) a convolution layer that 
performs feature extraction on the input data, and the number of layers of the convolution layer 

can be varied according to the actual situation; and (2) a fully connected layer that acts as a 

"classifier" in the whole convolutional neural network. Finally, an output layer consisting of 

logical functions or normalized exponential functions (Softmax function) was used to output 
taxonomic labels. The current mainstream, classical CNN structural model is shown in Fig. 2. 
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Fig. 2. A classical convolutional neural network model 

3.1 Transfer Learning for Feature Extraction 

Deep convolutional activation is a transfer learning method, and the general practice is to 

extract the output of the final layer of convolutional or penultimate fully connected layers as 

CNN features in existing CNNs and then classifies them directly using classifiers such as 
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SVM, Bayesian or Softmax. At present, the CNN models with high accuracy include LeNet, 
OverFeatNet, AlexNet, Google LeNet, Oxford Net, ImageNet and VGGNet. These models are 

trained with large datasets and have the ability to extract shallow basic features and deep 

abstract features. The transfer learning method is very effective, but if it is less similar, for 

example, the pre-trained dataset used is a natural landscape picture but is used for face 
recognition, the result is not so good, because the feature extraction of the face is different 

from the feature extraction of the natural scenery, and the convolution kernel learning does not 

have the same recognition pattern, so the parameters of the corresponding training are also 
different. Obviously, the X-ray images of the data set used in this paper are significantly 

different from the data set used in the pre-trained CNN model. Among the existing CNNs 

models, we consider three different pre-trained CNNs models: OverfeatNet, VGGNet, and 
GoogleNet. 

For these three network models, we need to adjust the size of the image to make it 

compatible with the input layer of each CNNs model. The input image sizes of the three 

models are 221 × 221, 224 × 224, 299 × 299, respectively. The input image sizes 

corresponding to the above three models are 221 × 221, 224 × 224, 299 × 299, respectively. 

Due to the different sizes of data images obtained after sampling, all images need to be 
up-sampled or down-sampled to meet the requirements of each model input layer. 

These three kinds of pre-trained networks have powerful functions in general visual tasks, 

especially in image classification tasks. Weights of models in the convolutional layer and fully 

connected layer are applicable to shape, texture and complex features of all images. The fully 

connected layer of the above three models can reach 2048 neurons (Overfeat), 4096 neurons 
(VGGNet) and 1000 neurons (GoogleNet). In this transfer learning model, we chose Support 

Vector Machine (SVM) as the classifier to classify the neurons processed through the fully 

connected layer, and then output seven classification results. 

3.2 Fine-tuning the CNN model 

Fine-tuning CNN is also one of the applications in deep learning methods. Fine-tuning this 
method can save a lot of computational resources and computation time, improve the 

computational efficiency and even accuracy, improve the generalization ability of the model, 

effectively prevent over-fitting, and achieve this by modifying the weights in the convolution 

layer and fully connected layer or modifying the number of output classes for different data 
sets. Therefore, OverfeatNet, VGGNet and GoogLeNet are fine-tuned for our pipeline 

welding defect dataset, in which the final classification number is adjusted from 1000 to 6 (six 

types of defects are included in the pipeline welding defect dataset), and the pipeline welding 
defect dataset is back-propagated through the fine-tuned model above, so as to obtain new 

weights and learning rates. 

3.3 RayNet structure 

Our last CNN model, named RayNet, was trained from scratch in the existing data set of 

welding defects in oil pipelines. The advantage of training a completely new CNN model over 

a fine-tuned one is that the entire CNN network architecture can be tuned according to the 
existing dataset: optimizing the grayscale image input size, reducing the number of 

convolution layers, and letting the network learn specific filters instead of adapting to generic 

filters. As shown in Fig. 3, RayNet consists of a convolution layer, a pooling layer, a ReLU 
function not shown, a fully connected layer, and finally a classification layer. 
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Fig. 3. Detailed model of different stages of RayNet: consisting of five convolution layers (pooling 

layer, ReLU function), two fully connected networks with neuron numbers of 1024 and 2048, 

respectively, and finally a Softmax classification layer. 

 

The input image needs to be preprocessed before the convolution layer, and the input image 

is scaled. We resized the input image and test the performance of RayNet with five different 

input image sizes. Finally, we chose the image resolution of 224 × 224 as the input layer of the 

network (experimentally verified in Section 4.4). 

LeCun et al. constructed a relatively complete convolutional neural network structure, and 

added a pooling layer to filter the input features based on the original convolution layer [17]. 
In addition, the ReLU activation function is also widely used in modern CNN network 

structure. The function of the convolution layer is to extract features from the input data, 

which contains several convolution kernels, and each element of the convolution kernel 
corresponds to a weight coefficient and a deviation. For the input image ( , )i j , the entire 

convolution formula is as follows: 
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In the formula, b  is the amount of deviation, and lT and 
1lT +

denote the input and output of 

the feature map of the 1l +  layer, respectively. 1l
L

+ is the size of the dimension of 1lT + . ( , )T i j  

is the pixel of the corresponding feature map ( , )i j . K is the number of channels of the feature 

map. The number of channels of the image in our dataset is generally 3, so 3K = , and 0
f s、  

and p  are the numbers of convolution layers, corresponding to the convolution kernel 

size, convolution steps, and number of fill layers, respectively. 

After feature extraction in the convolution layer, the output feature map is transferred to the 
pooling layer for feature selection and information filtering. Its function is to replace the result 

of a single point in the feature map with the statistics of the feature map of its neighboring 

regions. We choose the maximum pooling operation when training the RayNet structure, 

whose expression is as follows: 

(1) 

(2) 
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Where 
size

i
x  represents the size of the input feature map, 

i
F  represents the filter size, Pad  

represents the number of padding layers, and Stride  represents the pooling layer step size. 

The ReLU activation function is to add nonlinear factors in the convolution layer and make 

the output of the convolution layer into a nonlinear mapping. Compared with other activation 

functions, the ReLU activation function can overcome the vanishing gradient problem, speed 
up training, perform well without supervised pre-training, and provide the sparse expression 

ability of the neural network. Its expression is as follows: 

( ) max(0, )z z =  

It is invariant when z  is greater than or equal to 0; if it is less than 0, it is 0 after 

activation. 

In order to enable RayNet to perform better, we need to test the goodness of the network 

from different aspects and enable the performance of the network to be better compared to 
existing CNNs, where these aspects considered include: (1) the number of convolution layers; 

(2) the number of feature maps in each convolution layer. Therefore, for our experiments, we 

will continuously test the effect of different numbers of convolution layers on the 

experimental results, and each convolution layer has 20 feature maps (experimentally verified 
in Section 4.4). 

In our model, the convolution kernel used in the first convolution layer is 7 × 7, the 

convolution kernel used in the second convolution layer is 5 × 5, and the convolution kernel 

used in the remaining convolution layers is 3 × 3. The fully connected layer after the whole 

convolution layer consists of 2048 neurons, and finally a Softmax regression function is 
added. 

4. Experimental Results 

In this section, we first introduce the experimental dataset, experimental settings, and then use 

different models to test and compare the dataset, and finally visualize the classification results. 

4.1 Dataset 

In this study, we utilized a private database of welding defects in oil pipeline to test and 

evaluate the various methods mentioned in the paper. The data set includes 1631 X-ray films 
with annotated welding defects, which include: concavity, undercut, bar defects, circular 

defects, unfused defects, and incomplete penetrated. Fig. 4 presents an example diagrams of 

the six defects and shows different numbers of the six defects in Table 1 The original image 
size in the dataset is 256 × 256, and we randomly cropped the image to make it meet the 

requirements of OverfeatNet, VGGNet, GoogleNet input layer. At the same time, we 

compared the input image size of RayNet in Section 4. 

In order to train deep learning models, a large number of annotated datasets are required. 

The available image datasets pose a challenge for this training task, but the current mainstream 
approach is to perform data expansion and transfer learning on images. Data augmentation is a 

widely accepted process, which is used to increase the size of the training dataset with a faster 

convergence rate and avoid over-fitting of the model. In this study, the original images of oil 

pipeline welding defects were rotated at 45 ° angles (0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 ° 

(4) 
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and 315 °), and the original images were enhanced eight times. Therefore, we obtained a total 
of 13,048 images of welding defects in oil pipelines for training the various models proposed 

in the paper. Eighty percent of them were used to train models, 10 percent to validate models, 

and the remaining 10 percent to test models. 

（a） （b） （c）

（d） （e） （f）  
Fig. 4. Diagram of the six defects : (a) denotes concavity, (b) denotes undercut, (c) denotes bar defect, 

(d) denotes incomplete penetrated, (e) denotes unfused defect, and (f) denotes circular defect. 

Table 1. Number of Different Defects in the Dataset 

Defect 

Type 
Concavity Undercut Bar defect 

Incomplete 

penetrated 

Unfused 

defect 

Circular 

defect 

Quantity  287  272  258  245  276  293  

4.2 Experimental Setup 

In training, the input image size after data expansion is adjusted to 224 × 224. We used the 

stochastic gradient descent algorithm (SGD) to optimize the parameters of the network model. 
We used several groups of parameters to experiment with the proposed model. The 

experimental results are shown in Table 2, and it is concluded that the classification of group 

(A) parameters is the best. Therefore, we set batch size to 50 and trained 50 epochs. Learning 

rate was initially set to 0.001 and decreased to 0.0001 after 30 epochs, momentum factor was 
set to 0.9, and weight decay was set to 0.0001. 

Table 2. Comparison of Various Experimental Parameters 

Combination A B C D E 

Learning Rate 
0.001 and 

0.0001 

0.001 and 

0.0001 

0.005 and 

0.0005 

0.0001 and 

0.00001 

0.0005 and 

0.00005 

Weight Decay 0.0001 0.0002 0.0001 0.0001 0.0001 

Batch Size 50 30 50 50 50 

Accuracy 96.5% 95.2 94.7% 92.1% 90.5% 

Iteration 
Training 50 72 103 372 586 

Validation 16 23 29 46 113 

Computation  

Time(Seconds) 
1326 1469 1582 1769 2038 
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For each stage, the generated training, validation and test data sets were subjected to 
four-fold cross-validation to ensure that each welding defect X-ray film was tested identically 

to prevent any errors and enable the network to obtain the best classification performance. All 

of these experiments were performed on computers with Intel (R) Core (TM) i7-8700K and 

16GB RAM, equipped with NVIDIA TITA-N Xp GPU, and the time of experimental training 
was 2840 seconds per epoch, while the test time was 1 – 2 seconds. All models were 

implemented in the TensorFlow environment. 

4.3 Performance of pretrained convolutional neural networks 

In this section, we introduced the results achieved by the pre-trained network as well as the 

fine-tuned network on the dataset. In the experiments, we compared the classification 
accuracy of different types of CNN's pre-trained using pre-trained networks for image 

classification and visual recognition applications, which include OverFeatNet, VGGNet, 

GoogleNet. As shown in Fig. 5, GoogleNet achieved the highest accuracy, followed by 

VGGNet, while OverfeatNet had the lowest classification accuracy of 71.8%. 

In the fine-tuning test, we modified the final classifier to six classification results and 
compared it with the pre-trained network model experimentally, and the results are shown in 

Fig. 5. In order to increase the readability of the data, the accuracy rate in the map starts from 

60%, and the results achieved by fine-tuning the network are predictable, because the 

parameters of the fine-tuned network structure will be adjusted according to different datasets, 
and at the same time the fine-tuned GoogleNet has the highest classification accuracy, which 

is improved by 14.7% on the basis of the existing model classification accuracy, because 

GoogleNet has a deeper network layer, and does not use the fully connected layer, etc. 

 

 
Fig. 5. Classification accuracy rates for different models and after fine tuning. FT-X "indicates the 

corresponding model after fine-tuning. 

4.4 Performance of RayNet 

In the experiment, we cut the original input images randomly, and the experimental results are 

shown in Fig. 6. when the image input layer is 224 × 224, the classification accuracy reaches 
the highest 96.5%, and when the input layer is adjusted to 299 × 299, the classification 
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accuracy reaches the lowest 92.7%. Therefore we take 224 × 224 as the input layer of RayNet 
based on the experimental results. 

In the following experiments, the effect of network depth on classification accuracy was 

compared, including the number of convolutional layers, as well as the number of feature 

maps for each convolutional layer. We trained two to six convolutional layers, and the effect 

of different numbers of feature maps for each convolutional layer on the network performance, 
and the experimental results are shown in Table 3. The experimental results show that when 

the number of convolution layers is 5 and the number of feature maps is 96, 1024, 1024, 2048, 

2048 respectively, the network classification accuracy reaches the highest 96.5%, which 

shows that the network model can achieve good classification effect even if the number of 
convolution layers is much less than the number of existing models. 

 

 
Fig. 6. Performance of accuracy rate in different input layers 

 

Table 3. Performance of different convolutional layers and feature maps. "Conv." denotes the number 

of convolution layers, "map" denotes the number of feature maps for each convolution layer, and 

"accuracy (%)" denotes the classification accuracy corresponding to different structures. 

Conv. map Accuracy(%) 

2 96,1024 87.6 

2 96,2048 88.2 

3 96,1024,1024 88.9 

3 96,1024,2048 89.1 

3 96,2048,2048 89.2 

4 96,1024,1024,1024 88.7 

4 96,1024,1024,2048 89.7 

4 96,1024,2048,2048 90.1 
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4 96,2048,2048,1024 90.8 

5 96,1024,1024,1024,1024 93.5 

5 96,1024,1024,1024,2048 95.7 

5 96,1024,1024,2048,2048 96.5 

5 96,1024,2048,2048,2048 95.9 

5 96,1024,2048,2048,1024 96.2 

6 96,1024,1024,1024,2048,2048 91.3 

6 96,1024,2048,2048,2048,1024 90.5 

6 96,2048,1024,2048,1024,2048 89.6 

 

Finally, we compared the performance of different defects of oil pipeline weld (concavity, 

undercut, bar defect, circular defect, unfused defect and incomplete penetrated) in fine-tuning 

OverfeatNet, VGGNet, GoogleNet as well as RayNet, and the experimental results are shown 
in Table 4. The experiments show that these four networks have more effect on different 

defects. It can be seen that the model has a better classification effect on circular defects as 

well as unfused defects. This is because the defects in our data set show more of these two 
types of defects. In the real pipeline welding operation, the performance is also more circular 

defects and unfused defects. 

 

Table 4. Classification Accuracy of Different Defects in Different Networks (%) 

Group OverfeatNet VGGNet GoogLeNet RayNet 

Concavity 93.4 94.6 95.2 96.7 

Undercut 92.5 93.8 94.5 95.3 

Bar defect 92.8 94.3 94.9 96.1 

Incomplete 

penetrated 
91.2 92.5 93.1 93.8 

Unfused defect 93.8 94.0 94.9 95.4 

Circular defect 95.8 96.4 97.1 98.3 

 

In order to further assess the misclassification results of RayNet model and GoogLeNet 

model in six defects, a confusion matrix is introduced to analyze the classification results of 
the two models. The experimental results are shown in Fig. 7. 

As seen from Fig. 7, Fig. (a) is the confusion matrix obtained by the six kinds of defects in 

the RayNet model experiment. The blue part of the data on the diagonal line in the matrix 

means higher classification accuracy. In the undercut, there is 4% of the data is divided into 

bar defects. The appearance of this situation indicates that the two defects are similar, so it will 
cause misclassification. At the same time, this similarity in incomplete penetrated and unfused 

defect. However, the complete and correct classification can be achieved in circular defects, 

because the circular defect has a large amount of data, and the defects are more obvious, and 
the similarity with other defects is extremely low. Fig. (b) shows the performance of the six 



1098                                Shang et al.: Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network 

defects on the GoogLeNet model, which is basically similar to the performance in Fig. (b), but 
performs worse in terms of classification accuracy. 

As seen from Fig. 7, Fig. (a) is the confusion matrix obtained by the six kinds of defects in 

the RayNet model experiment. The blue part of the data on the diagonal line in the matrix 

means higher classification accuracy. In the undercut, there is 4% of the data is divided into 

bar defects. The appearance of this situation indicates that the two defects are similar, so it will 
cause misclassification. At the same time, this similarity in incomplete penetrated and unfused 

defect. However, the complete and correct classification can be achieved in circular defects, 

because the circular defect has a large amount of data, and the defects are more obvious, and 

the similarity with other defects is extremely low. Fig. (b) shows the performance of the six 
defects on the GoogLeNet model, which is basically similar to the performance in Fig. (a), but 

performs worse in terms of classification accuracy. 

 
Fig. 7. The display of two model classification results in the confusion matrix (un-penetrated = 

incomplete penetrated) 

 

Overall, RayNet is outperformed all the other CNN-based solutions, with a classification 

accuracy of 96.5% among the six defect types. Furthermore, the results of study also suggest 

that for weld defect X-ray images, many convolution layers — as in the case of GoogLeNet — 

are not strictly necessary. At the same time, in order to prove that the RayNet model is superior 

to other algorithm models, Table 5 shows the comparison of the average absolute error (MAE) 
between multiple algorithms in the literature and the RayNet model. 

 

Table 5. Comparison of algorithms in the literature with RayNet in MAE 

Method 
Reading 

Average 
1 2 

Malarvel et al. (2017) 2.03 1.95 1.99 

Nacereddine et al. (2019) 1.92 1.87 1.90 

Shao et al. (2012) 2.69 2.57 2.63 

Al-Antari et al. (2018) 1.25 1.21 1.23 

Guan et al. (2018) 1.34 1.28 1.31 

Jiang et al. (2018) 0.98 0.85 0.915 
RayNet 0.79 0.73 0.76 
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As seen in Table 5, among the seven methods, the RayNet model has the lowest MAE. And 

the CNN model (Al-Antari et al. Guan et al., Jiang et al.) has a slightly lower MAE than the 
traditional image processing method (Malarvel et al., Nacereddine et al., Shao et al.). 

Therefore, we conclude that the accuracy of X-ray images processed with the CNN method is 

higher, and the specific CNN model for the weld-defect X-ray film of the pipeline is more 
suitable. 

 

4.5 Feature Identification 

We show the corresponding images of the RayNet model output at each layer separately in 
Fig. 8, which shows the partial output results of the first two convolution layers due to the 

space problem. It can be seen from (b) that the features extracted from (a) the convolution 

operation on the input image (we just show the partially extracted features), (d) are the features 

extracted from the convolution operation on the basis of (b), and finally after a series of 
convolution, pooling as well as ReLU function operations we get the fully connected layer of 

(g). 

 

（a）

（b）
（c）

（d）

（a）

（a）

 

Fig. 8. Partial output results for each layer of RayNet network: (a) input image, (b) Conv. (a) output 

image, (b) output image, (c) Pool. 1 output image, (d) Conv. 2 output image, (e) Pool. 2 output image, 

(f) an output of the remain portion (shown differently for spatial reasons), (g) fully connected layer 

output result 
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Fig. 9. Part of the feature points extracted from the RayNet model (the original image is the lower left 

corner of each picture.) 

 

Fig. 9 shows the partial feature display extracted in the convolution operation engineering. 
We illustrate it with six different defects. The original image is shown in the lower left corner 

of each figure. It is very clear that the feature position extracted from the image is very 

accurate. 

5. Conclusion 

In this paper we have investigated the application of deep learning in X-ray images of oil 
pipeline welds. We have first tested the application of the existing pre-trained convolutional 

neural networks (OverfeatNet, VGGNet, GoogLeNet) in 13048 X-ray images. Fine-tuning the 

three models in the weld image, the accuracy rate is improved by 14.7%, which is better than 

the existing traditional image processing methods. The main contribution was to design and 
train a pipe weld X-ray proprietary convolutional neural network model (RayNet) from 

scratch, which consists of five convolutional layers and two fully connected layers. 

Experimental comparison of multiple sets of parameters yields a set of parameters that are 
more suitable for the model. At the same time, the influence of different input picture sizes on 

the model was tested, and 224×224 was finally determined as the input layer. The accuracy of 

classification and identification reached 96.5%. Compared with other pre-trained networks, 
the RayNet model has a smaller number of network layers and the performance demonstrated 

by the experiment is more intuitive. The experimental results are promising for the application 

of RayNet in the identification of pipeline welding defects, and this network model can assist 

the evaluators in the identification and classification of welding defects. 

Although the model has achieved significant features, our study is limited by the lack of 

data volume and computational resources. In future work, we will acquire more pipeline weld 
images and collect more kinds of defects to improve the CNN model to improve the 

classification accuracy and performance when extracting features. In order to obtain better 
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performance, more effective detection methods are applied in automatic identification of 
pipeline welds. 
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