• Title/Summary/Keyword: Internet Based Learning

Search Result 1,585, Processing Time 0.027 seconds

An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases

  • Zhuang, Yi;Chen, Shuai;Jiang, Nan;Hu, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2359-2376
    • /
    • 2022
  • With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.

Efficient Resource Slicing Scheme for Optimizing Federated Learning Communications in Software-Defined IoT Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.27-33
    • /
    • 2021
  • With the broad adoption of the Internet of Things (IoT) in a variety of scenarios and application services, management and orchestration entities require upgrading the traditional architecture and develop intelligent models with ultra-reliable methods. In a heterogeneous network environment, mission-critical IoT applications are significant to consider. With erroneous priorities and high failure rates, catastrophic losses in terms of human lives, great business assets, and privacy leakage will occur in emergent scenarios. In this paper, an efficient resource slicing scheme for optimizing federated learning in software-defined IoT (SDIoT) is proposed. The decentralized support vector regression (SVR) based controllers predict the IoT slices via packet inspection data during peak hour central congestion to achieve a time-sensitive condition. In off-peak hour intervals, a centralized deep neural networks (DNN) model is used within computation-intensive aspects on fine-grained slicing and remodified decentralized controller outputs. With known slice and prioritization, federated learning communications iteratively process through the adjusted resources by virtual network functions forwarding graph (VNFFG) descriptor set up in software-defined networking (SDN) and network functions virtualization (NFV) enabled architecture. To demonstrate the theoretical approach, Mininet emulator was conducted to evaluate between reference and proposed schemes by capturing the key Quality of Service (QoS) performance metrics.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

Design of Autonomous Mobile Robot System Based on Artificial Immune Network and Internet (인공 면역망과 인터넷에 의한 자율이동로봇 시스템 설계)

  • Lee, Dong-Je;Lee, Min-Jung;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.522-531
    • /
    • 2001
  • Recently conventional artificial intelligence(AI) approaches have been employed to build action selectors for the autonomous mobile robot(AMR). However, in these approaches, the decision making process to choose an action from multiple competence modules is still an open question. Many researches have been focused on the reactive planning systems such as the biological immune system. In this paper, we attempt to construct an action selector for an AMR based on the artificial immune network and internet. The information from vision sensors is used for antibody. We propose a learning method for artificial immune network using evolutionary algorithm to produce antibody automatically. The internet environment for an AMR action selector shows the usefulness of the proposed learning artificial immune network application.

  • PDF

A Feature-Based Malicious Executable Detection Approach Using Transfer Learning

  • Zhang, Yue;Yang, Hyun-Ho;Gao, Ning
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.57-65
    • /
    • 2020
  • At present, the existing virus recognition systems usually use signature approach to detect malicious executable files, but these methods often fail to detect new and invisible malware. At the same time, some methods try to use more general features to detect malware, and achieve some success. Moreover, machine learning-based approaches are applied to detect malware, which depend on features extracted from malicious codes. However, the different distribution of features oftraining and testing datasets also impacts the effectiveness of the detection models. And the generation oflabeled datasets need to spend a significant amount time, which degrades the performance of the learning method. In this paper, we use transfer learning to detect new and previously unseen malware. We first extract the features of Portable Executable (PE) files, then combine transfer learning training model with KNN approachto detect the new and unseen malware. We also evaluate the detection performance of a classifier in terms of precision, recall, F1, and so on. The experimental results demonstrate that proposed method with high detection rates andcan be anticipated to carry out as well in the real-world environment.

An Internet-based Self-Learning Educational System for Efficient Learning of Java Language (효율적인 자바언어 학습을 위한 인터넷기반 자율학습시스템의 구현)

  • Kim Dong-Sik;Lee Dong-Yeop
    • Journal of Engineering Education Research
    • /
    • v.8 no.1
    • /
    • pp.71-83
    • /
    • 2005
  • This paper presents an internet-based self-learning educational system which can be enhancing efficiency in the learning process of Java language. The proposed self-learning educational system is called Java Web Player(JWP), which is a Java application program and is executable through Java Web Start technologies. Also, three important sequential learning processes : concept learning process, programming practice process and assessment process are integrated in the proposed JWP using Java Web Start technologies. This JWP enables the learners to achieve efficient and interesting self-learning since the learning process is designed to enhance the multimedia capabilities on the basis of various educational technologies. Furthermore, internet-based on-line voice presentation and its related texts together with moving images are synchronized for efficient language learning process. Also, a simple and useful Java compiler is included in the JWP for providing language practice environment such as coding, editing, executing and debugging Java source files. Finally, repeated practice can make the learners to understand easily the key concepts of Java language. Simple multiple choices are given suddenly to the learners while they are studying through the JWP and the test results are displayed on the message box. This assessment process is very essential to increase the learner's academic capability.

Design a Learning Management System Platform for Primary Education

  • Quoc Cuong Nguyen;Tran Linh Ho
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.258-266
    • /
    • 2024
  • E-learning systems have proliferated in recent years, particularly in the wake of the global COVID-19 pandemic. For kids, there isn't a specific online learning platform available, though. To do this, new conceptual models of training and learning software that are adapted to the abilities and preferences of end users must be created. Young pupils: those in kindergarten, preschool, and elementary school are unique subjects with little research history. From the standpoint of software technology, young students who have never had access to a computer system are regarded as specific users with high expectations for the functionality and interface of the software, social network connectivity, and instantaneous Internet communication. In this study, we suggested creating an electronic learning management system that is web-based and appropriate for primary school pupils. User-centered design is the fundamental technique that was applied in the development of the system that we are proposing. Test findings have demonstrated that students who are using the digital environment for the first time are studying more effectively thanks to the online learning management system.

A review of Chinese named entity recognition

  • Cheng, Jieren;Liu, Jingxin;Xu, Xinbin;Xia, Dongwan;Liu, Le;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2012-2030
    • /
    • 2021
  • Named Entity Recognition (NER) is used to identify entity nouns in the corpus such as Location, Person and Organization, etc. NER is also an important basic of research in various natural language fields. The processing of Chinese NER has some unique difficulties, for example, there is no obvious segmentation boundary between each Chinese character in a Chinese sentence. The Chinese NER task is often combined with Chinese word segmentation, and so on. In response to these problems, we summarize the recognition methods of Chinese NER. In this review, we first introduce the sequence labeling system and evaluation metrics of NER. Then, we divide Chinese NER methods into rule-based methods, statistics-based machine learning methods and deep learning-based methods. Subsequently, we analyze in detail the model framework based on deep learning and the typical Chinese NER methods. Finally, we put forward the current challenges and future research directions of Chinese NER technology.

The Component based U-Learning System using Item Response Theory (문항반응이론을 이용한 컴포넌트 기반의 U-러닝 시스템)

  • Jeong, Hwa-Young
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.127-133
    • /
    • 2007
  • The u-learning environment has been developed through a number of iterations, and has now been formally evaluated, through analysis of student learning results and the use of quantitative and qualitative measures, Generally, for advance learning effect and analysis of student learning results, the most learning system be use to the item analysis method. But, nowadays, it has using the IRT(Item Response Theory) instead of the item analysis method, The IRT adopts explicit models for the probability of each possible response to a test. Therefore, I proposed the lightweight component based u-learning system using the IRT. Applied device of u-learning is PDA which is in Windows mobile 5.0 environments.

  • PDF

Learning Media on Mathematical Education based on Augmented Reality

  • Kounlaxay, Kalaphath;Shim, Yoonsik;Kang, Shin-Jin;Kwak, Ho-Young;Kim, Soo Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1015-1029
    • /
    • 2021
  • Modern technology offers many ways to enhance teaching and learning that in turn promote the development of tools for educational activities both inside and outside the classroom. Many educational programs using the augmented reality (AR) technology are being widely used to provide supplementary learning materials for students. This paper describes the potential and challenges of using GeoGebra AR in mathematical studies, whereby students can view 3D geometric objects for a better understanding of their structure, and verifies the feasibility of its use based on experimental results. The GeoGebra software can be used to draw geometric objects, and 3D geometric objects can be viewed using AR software or AR applications on mobile phones or computer tablets. These could provide some of the required materials for mathematical education at high schools or universities. The use of the GeoGebra application for education in Laos will be particularly discussed in this paper.