• 제목/요약/키워드: International Diesel

검색결과 187건 처리시간 0.018초

EFFECTS OF TRACE METALS ON PARTICULATE MATTER FORMATION IN A DIESEL ENGINE: METAL CONTENTS FROM FERROCENE AND LUBE OIL

  • Lee, D.G.;Miller, A.;Park, K.H.;Zachariah, M.R.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.667-673
    • /
    • 2006
  • Diesel particulate matter(DPM) often contains small amounts of metal as a minor component but this metal may contribute to adverse health effects. Knowledge of the mechanism for particle formation as well as the size preference of the trace metals is critical to understanding the potential for health concerns. To achieve this, the size and the composition of each particle should be optimally measured at the same time. Single particle mass spectrometer(SPMS) would be the best tool for this objective. In this paper, we therefore will introduce new findings about the mechanism and distribution of the trace metals in DPM, derived from a study where an SPMS was used to analyze freshly emitted DPM.

수소를 첨가한 디젤엔진의 연소 및 배기특성에 관한 실험적 연구 (Experimental Study on Combustion and Emission Characteristics of Diesel Engine with Hydrogen Application)

  • 오정모
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.203-209
    • /
    • 2017
  • The International maritime organization(IMO), in an effort to slow down the global warming, proposes reduction in ship's speed as a way to lower the rate emissions from ships. In addition, since ship's fuel cost have been increased, the shipping volumes, fuel-saving technology are being required urgently. Therefore, in this present study, a method of reducing the fuel cost that can improve the performance of the diesel engine was tried by introducing a predetermined amount (0.1~0.3% of the mass amount of fuel used) of hydrogen fuel additive. The experimental conditions of the test engine were 1500rpm and torque BMEP-10b ar. The engine performances (power output, fuel consumption rate, p-max, exhaust temperature) were compared before and after addition of hydrogen fuel additives. This experimental study confirmed reducing at least 2% fuel consumption and 2.19% NOx emission.

Utilization of alternative marine fuels for gas turbine power plant onboard ships

  • El Gohary, M. Morsy;Seddiek, Ibrahim Sadek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.21-32
    • /
    • 2013
  • Marine transportation industry is undergoing a number of problems. Some of these problems are associated with conventional marine fuel-oils. Many researchers have showed that fuel-oil is considered as the main component that causes both environmental and economic problems, especially with the continuous rising of fuel cost. This paper investigates the capability of using natural gas and hydrogen as alternative fuel instead of diesel oil for marine gas turbine, the effect of the alternative fuel on gas turbine thermodynamic performance and the employed mathematical model. The results showed that since the natural gas is categorized as hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using the natural gas was found to be close to the diesel case performance. The gas turbine thermal efficiency was found to be 1% less in the case of hydrogen compared to the original case of diesel.

MODELING AND PI CONTROL OF DIESEL APU FOR SERIES HYBRID ELECTRIC VEHICLES

  • HE B.;OUYANG M.;LU L.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.91-99
    • /
    • 2006
  • The diesel Auxiliary Power Unit (APU) for vehicle applications is a complex nonlinear system. For the purpose of this paper presents a dynamic average model of the whole system in an entirely physical way, which accounts for the non-ideal behavior of the diode rectifier, the nonlinear phenomena of generator-rectifier set in an elegant way, and also the dynamics of the dc load and diesel engine. Simulation results show the accuracy of the model. Based on the average model, a simple PI control scheme is proposed for the multivariable system, which includes the steps of model linearization, separate PI controller design with robust tuning rules, stability verification of the overall system by considering it as an uncertain one. Finally it is tested on a detailed switching model and good performances are shown for both set-point following and disturbance rejection.

MEASUREMENT OF SIZE DISTRIBUTION OF DIESEL PARTICLES: EFFECTS OF INSTRUMENTS, DILUTION METHODS, AND MEASURING POSITIONS

  • KIM H.;LEE S.;KIM J.;CHO G.;SUNG N.;JEONG Y.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.119-124
    • /
    • 2005
  • Size distribution of diesel particles measured by ELPI and SMPS were compared. The results of ELPI and SMPS showed acceptable agreements in the qualitative comparison but showed differences in the quantitative comparison. In addition, the results of ELPI and SMPS showed a same trend about the change of engine loads. In this study, the effects of dilution methods and measuring positions on the measurement of PM size distribution were also studied by using the SMPS. As results, the decrease of large particles and the increase of small particles were observed when the dilution air was heated. It was also observed that the number concentration of the diesel particles was varied within 20$\%$ by the different measuring positions of 140 cm.

INVESTIGATION OF SOOT OXIDATION CHARACTERISTICS IN A SIMULATED DIESEL PARTICULATE FILTER

  • Lee, H.S.;Chun, K.M.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.261-267
    • /
    • 2006
  • Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Carbon oxidation characteristics were investigated by temperature programmed oxidation(TPO) method as well as constant temperature oxidation(CTO) with a flow reactor including porous bed. The activation energy of carbon oxidation was increasing with temperature and had two different constant values in the early and the later stage of the oxidation process respectively in TPO experiment. Kinetic constants were derived and the reaction mechanisms were assumed from the experimental results and a simple reaction scheme was proposed, which approximately predicted the overall oxidation process in TPO as well as CTO.

4행정 디젤엔진에 연료첨가제 사용에 따른 성능 및 배기배출물 개선에 관한 연구 (Improvement of the performance and emission in a four-stroke diesel engine using fuel additive)

  • 류영현;이영서;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권9호
    • /
    • pp.762-767
    • /
    • 2016
  • 디젤엔진은 다른 엔진과 비교했을 때 열효율이 높고 다양한 연료를 사용할 수 있다는 장점을 가지고 있다. 하지만, 대기오염을 유발하는 배기배출물이 발생한다는 단점도 가지고 있다. 따라서 전 세계적으로 디젤엔진을 사용하는 승용차 및 상용차, 선박 등에 대한 국제규정인 EU Euro 6, IMO MEPC Tier 3 및 US EPA Tier 4 등의 대기환경오염법이 더욱 엄격해져가고 있다. 본 연구에서는 경유를 사용하는 발전용 4행정 디젤엔진을 실험 대상으로 하였으며, 유용성 Ca계 유기금속화합물을 경유에 투입하여 실험 결과를 비교, 분석하였다. Ryu et al. 논문에서는 2행정 디젤엔진에 연료첨가제를 적용했던 연구결과를 발표하였다. 본 논문에서는 4행정 디젤엔진에 연료첨가제를 투입하여 엔진의 성능 및 배기배출물 개선에 대해서 실험을 실시하였다. 본 연구를 통해서 2행정과 4행정 디젤엔진 모두에 연료첨가제를 적용하여 그 결과를 고찰해 볼 수 있었으며 유용성 Ca계 유기금속화합물 연료첨가제가 디젤엔진의 성능(연료소비율, 배기온도) 및 배기배출물(질소 산화물, 일산화탄소)을 개선시킬 수 있음을 확인할 수 있었다.

이유체 노즐 미립화 특성이 요소 열분해에 미치는 영향 (Effect of Atomization Characteristics of Twin Fluid Nozzle on Urea Pyrolysis)

  • 구건우;정경열;윤현진;석지권;홍정구
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.162-167
    • /
    • 2015
  • Recently, there has been rising interest in applying urea-SCR systems to large marine diesel engines because the International Maritime Organization (IMO) has decided to enforce NOx reduction regulations. Generally, in the case of urea-SCR of the marine diesel engine, a type of twin fluid atomizer has been using for injection of the urea solution. This study conducted to investigate an effect of the atomization of external-mixing twin fluid nozzle on the conversion efficiency of reductant. The lab-scaled experiment device was installed to mimic the urea-SCR system of the marine diesel engine for this study. In a low temperature inflow gas condition which is similar with the exhaust temperature of large marine diesel engine, this study found that the conversion efficiency of reductant of when relative big size urea solution droplets are injected into exhaust gas stream can be larger than that of when small size urea solution droplets are injected. According to results of this study, the reason was associated with decrease of reaction rate constant caused from temperature drop of inflow gas by assist air of twin fluid atomizer.

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

DETAILED EXAMINATION OF INVERSE-ANALYSIS PARAMETERS FOR PARTICLE TRAPPING IN SINGLE CHANNEL DIESEL PARTICULATE FILTER

  • Jung, S.C.;Park, J.S.;Yoon, W.S.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.165-177
    • /
    • 2007
  • Predictions of diesel particulate filtration are typically made by modeling of a particle collection, and providing particle trapping levels in terms of a pressure drop. In the present study, a series of single channel diesel particulate filter (DPF) experiments are conducted, the pressure traces are inversely analyzed and essential filtration parameters are deducted for model closure. A DPF filtration model is formulated with a non-linear description of soot cake regression. Dependence of soot cake porosity, packing density, permeability, and soot density in filter walls on convective-diffusive particle transportation is examined. Sensitivity analysis was conducted on model parameters, relevant to the mode of transition. Soot cake porosity and soot packing density show low degrees of dispersion with respect to the Peclet number and have asymptotes at 0.97 and $70\;kg/m^3$, respectively, at high Peclet number. Soot density in the filter wall, which is inversely proportional to filter wall Peclet number, controls the filtration mode transition but exerts no influence on termination pressure drop. The percolation constant greatly alters the extent of pressure drop, but is insensitive to volumetric flow rate or temperature of exhaust gas at fixed operation mode.