• Title/Summary/Keyword: Internal reformer

Search Result 17, Processing Time 0.017 seconds

Fabrication and Performance Evaluation of MEMS Methanol Reformer for Micro Fuel Cells (마이크로 연료전지용 MEMS 메탄올 개질기의 가공과 성능시험)

  • Kim, Tae-Gyu;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1196-1202
    • /
    • 2006
  • A MEMS methanol reformer was fabricated and its performance was evaluated in the present study. Catalytic steam reforming of methanol was selected because the process had been widely applied in macro scale reformers. Conventional Cu/ZnO catalyst that was prepared by co-precipitation method to give the highest coating quality was used. The reactor structure was made by bonding three layers of glass wafers. The internal structure of the wafer was fabricated by the wet-etching process that resulted in a high aspect ratio. The internal surface of the reactor was coated by catalyst and individual wafers were fusion-bonded to form the reactor structure. The internal volume of the microfabricated reactor was $0.3cm^3$ and the reactor produced exhaust gas with hydrogen concentration at 73%. The production rate of hydrogen was 4.16 ml/hr that could generate power of 350 mW in a typical PEM fuel cell.

Computational Analysis for Improving Internal Flow of High Pressure Methanol Steam Reformer Pressure Vessel (고압형 메탄올 수증기 개질기 압력용기의 내부 유동 개선을 위한 전산 해석)

  • YU, DONGJIN;JI, HYUNJIN;YU, SANGSEOK
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.5
    • /
    • pp.411-418
    • /
    • 2020
  • A reformer is a device for producing hydrogen used in fuel cells. Among them, methanol steam reformer uses methanol as fuel, which is present as a liquid at room temperature. It has the advantage of low operating temperature, high energy density, and high hydrogen production. The purpose of this study is to improve the internal flow of the pressure vessel when a bundle of methanol steam reformer in the pressure vessel goes out to a single outlet. An analysis of equilibrium reaction to methanol steam reforming reaction was conducted using Aspen HYSYS® (Aspen Technology Inc., Bedford, USA), and based on the results, computational analysis was conducted using ANSYS Fluent® (ANSYS, Inc., Canonsburg, USA). For comparison of the results, the height of the pressure vessel, outlet diameter, and fillet was set as variables, and the optimum geometry was selected by comparing the effects of gravity and the amount of negative pressure.

Effects of Angle of Foot-Bar and Knee Posture on Core Muscle Activity during Pilates Reformer High-Plank

  • Kihong Kim;Hanna Choi;Hwanjong Jeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.156-162
    • /
    • 2024
  • The purpose of this study was to investigate the muscle activity of internal oblique, rectus femoris, and multifidus according to knee posture and foot bar angle during pilates reformer high flank exercise. Twelve women in their 20s were recruited within six months of their experience as pilates instructors. The subjects performed six types of high flanks according to knee posture and foot bar angle. EMG signals of internal oblique, rectus femoris, and multifidus during exercise were measured and analyzed by integral EMG. The collected data were processed by repeated measures two-way ANOVA. In this paper it shows the following results. First, internal oblique iEMG was not significantly different according to knee posture and foot bar angle. Second, the rectus femoris had an interaction effect according to knee posture and foot bar angle. Third, there was no significant difference in multifidus according to knee posture and foot bar angle. In conclusion, according to the exercise method, the activity of the rectus femoris was the highest in the knee bending and high foot-bar angle high plank exercise, and there was no difference between the internal oblique and multifidus.

A Study on Optimization of Reformer for kW Class SOFC System (kW급 SOFC 시스템용 개질기 최적화)

  • YI, YONG;PARK, SE JIN;KIM, MIN SOO;SHIN, JANG SIK;SHIN, SEOCK JAE
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.4
    • /
    • pp.317-323
    • /
    • 2018
  • Solid oxide fuel cell (SOFC) operates at high temperature, therefor has the advantage of higher power generation and using exhaust heat than other fuel cells. In particular, the reforming reaction can be performed inside the SOFC stack to reduce the cooling of the stack and the burden on the reformer reactor. In this study, the reformer structure, operating characteristics, and thermal efficiency were evaluated for the optimization design of a heat exchanger type reformer of a 1 kW SOFC system.

Geometric Characteristics of Methane Steam Reforming with Low Temperature Heat Source (중저온 열원에 의한 메탄 수증기 개질의 형상 인자에 따른 특성)

  • Shin, Gahui;Yun, Jinwon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.793-799
    • /
    • 2016
  • In a hybrid fuel cell system, low-temperature reforming technology, which uses waste heat as a heat source, is applied to improve system efficiency. A low temperature reformer is required to optimize geometry in low thermal conditions so that the reformer can achieve the proper methane conversion rate. This study analyzed internal temperature distributions and the reaction patterns of a reformer by considering the change of the shape factor on the limited heat supply condition. Unlike the case of a high temperature reformer, analysis showed that the reaction of a low temperature reformer takes place primarily in the high temperature region of the reactor exit. In addition, it was confirmed that the efficiency can be improved by reducing the GHSV (gas hourly space velocity) or increasing the heat transfer area in the radial direction. Through reacting characteristic analysis, according to change of the aspect ratio, it was confirmed that a low temperature reformer can improve the efficiency by increasing the heat transfer in the radial direction, rather than in the longitudinal direction.

Study of Pilot Pre-reformer Reaction Characteristic for Internal Reforming MCFC (내부개질형 MCFC용 파일롯 예비개질기 반응 특성 연구)

  • Choi, Byungok;Lee, Sanghoon;Kim, Jaesig;Jeong, Jinhyeok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.86.1-86.1
    • /
    • 2010
  • 예비개질기(Pre-reformer)는 중대형 내부개질형 용융탄산염 연료전지(MCFC) 시스템에서 다양한 연료를 사용하기 위한 필수적인 화학반응기이다. 예비개질기는 스택 전단에 설치함으로서 스택 내부의 열균형을 유지하고, 다양한 원료를 연료로 이용할 수 있도록 하며, 황화물로부터 후단의 개질촉매 및 전극촉매를 보호하여 주개질 반응의 부담을 감소시켜 MCFC 시스템의 내구성 향상의 중요한 역할을 한다. 본 연구는 예비개질 반응기 설계에 CFD 모델링을 적용하기에 앞서 파일롯 반응기 내 농도/ 온도 구배를 측정하고자 하는 목적으로 수행되었다. 반응가스로는 천연가스 내 고차탄화수소(C2 이상) 중 상대적으로 높은 농도를 가진 에탄을 이용하였고, MCFC용 예비개질기의 운전특성을 고려하여 비교적 낮은 온도와 높은 수증기/탄소 비에서 단열반응기로 실험을 진행하였다. 향후 본 실험결과를 이용하여 CFD 모델링에 대한 검증을 수행할 예정이며, 하수처리장부생가스(ADG)/ 매립지 가스(LFG)용 MCFC 시스템을 위한 예비개질기 설계에도 적용을 하고자 한다.

  • PDF

A Comparison with CFD Simulation and Experiment for Steam-methane Reforming Reaction in Double pipe Continuous Reactor (이중관형 연속 반응기에서 수증기-메탄 개질반응의 실험 및 CFD 시뮬레이션)

  • Shin, Dong-Woo;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.226-236
    • /
    • 2013
  • The heat distribution and internal flow from the efficiency of actual reformer and specification variation, using the computer simulation and experiment about the steam methane reforming reaction which uses the high temperature reformer. Reaction model from steam refoemer uses the steam response model developed by Xu & Froment.As result we supposed the chemical react Steam Reforming(SR), Water Gas Shift(WGS), and Direct Steam Reforming(DSR) from the inner high temperature reformer dominates the response has dissimilar response. According to result of steam methane reforming reaction exam using high temperature reformer, we figured out when Steam Carbon Ratio(SCR) increase, number of hydrogen yield increases but methane decreases. When comparing and examining between design with one inlet and two inlet, result came out one inlet design is more outstanding at thermal distribution and internal flow, hydrogen yield in one inlet design than two inlet design.

Effect of an 8-week Closed Kinetic Chain Styled Pilates Exercise on Lower Limb Alignment (8주간 닫힌 사슬형 필라테스 운동이 하지 정렬에 미치는 영향)

  • Ga Ram Jeon;Sukhoon Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.128-136
    • /
    • 2023
  • Objective: The aim of this study was to investigate the effect of an 8-week closed kinetic chain typed Reformer and Chair Pilates exercise on static and dynamic lower limb alignment for healthy female adults. Method: Ten healthy young female adults without musculoskeletal injury history in last 6 months (Age: 29.3 ± 3.5 yrs., Height: 165 ± 3.4 cm, Body mass: 58.2 ± 5.4 kg) participated in this study. All participants asked to join the 8-week closed kinetic chain typed Reformer and Chair Pilates exercise, and the program was conducted for 60 minutes twice a week. Participants were asked to be measure a static Q-angle and performed free squat one week before and after the program. A 3-D motion analysis with 8 infrared cameras and 5 channels of EMG was executed in this study. The effectiveness of the training was evaluated by paired t-test, and the significance level was set at .05. Results: A significantly decreased in internal rotation angles was found at hip joint during free squat after the training. Also, significantly decreased in lateral rotation angles were found at knee and ankle joint during free squat after training. Finally, significantly decreased in muscle activations were found at adductor longus and peroneus longus during free squat after training. Conclusion: From results of our study, it is concluded that an 8-week closed kinetic chain typed Pilates exercise positively effect on lower limb alignment during dynamic movement.

Operating Characteristics of MCFC System on the Diversification of Fuel (연료 다변화에 따른 용융 탄산염 연료전지 시스템 운전 특성)

  • Im, Seokyeon;Sung, Yongwook;Han, Jaeyoung;Yu, Sangseok
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.156-163
    • /
    • 2015
  • The fuel cells have been investigated in the applications of marine as the high efficient and eco-friendly power generating systems. In this study, modeling of IR Type molten carbonate fuel cell (Internal Reforming Type molten carbonate fuel cell) has been developed to analyze the feasibility of thermal energy utilization. The model is developed under Aspen plus and used for the study of system performances over regarding fuel types. The simulation results show that the efficiency of MCFC system based on NG fuel is the highest. Also, it is also verified that the steam reforming is suitable as pre-reforming for diesel fuel.

Performance Characteristics Analysis of Gas Turbine-Pressurized SOFC Hybrid Systems (가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • 양원준;김동섭;김재환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.615-622
    • /
    • 2004
  • Recently, the hybrid system combining fuel cell and gas turbine has drawn much attention owing to its high efficiency and ultra low emission. It is now on the verge of world wide development and various system configurations have been proposed. A national project funded by Korean government has also been initiated to develop a pressurized hybrid system. This work aims at presenting design performance analysis for various possible system configurations as an initial step for the system development. Study focuses are given to major design options including the power ratio between gas turbine and fuel cell, reforming method (internal or external), reforming heat source (reforming burner, cathode hot air, fuel cell heat release) and steam supply method for reformer (anode gas recirculation, external steam generator). A wide variation in performance among different configurations has been predicted.