• 제목/요약/키워드: Internal membrane

검색결과 537건 처리시간 0.021초

내부 필터 발효기에서 Halobacterium halobium의 배양에 의한 박테리오로돕신의 생산 (Production of Bacteriorhodopsin by Halobacterium halobium in the Internal Membrane Bioreactor)

  • 엄영순;박준택;홍순호;이상엽;장호남
    • KSBB Journal
    • /
    • 제13권3호
    • /
    • pp.268-271
    • /
    • 1998
  • Bacteriorhodopsin in the purple membrane (PM) of halobacteria has recently been attracting much attention to be used as a component of molecular electron device and optical computers. In order to increase the productivity of bacteriorhodopsin in high cell density cultures of Halobacterium halobium R1, an internal membrane cell-retention bioreactor system was employed. As a result, the production of cell mass at OD660 of 12 and of bacteriorhodopsin at 125-130 mg/L were obtained using the internal membrane bioreactor system at a dilution rate of 0.066 hr-1. The productivity achieved by the internal membrane system (0.7 mg/L$.$hr) was 3.5-fold higher than that obtained by the corresponding batch cultivations (0.2 mg/L$.$hr).

  • PDF

Characterization of the Putative Membrane Fusion Peptides in the Envelope Proteins of Human Hepatitis B Virus

  • Kang, Ha-Tan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권10호
    • /
    • pp.1756-1762
    • /
    • 2007
  • Envelope proteins of virus contain a segment of hydrophobic amino acids, called as fusion peptide, which triggers membrane fusion by insertion into membrane and perturbation of lipid bilayer structure. Potential fusion peptide sequences have been identified in the middle of L or M proteins or at the N-terminus of S protein in the envelope of human hepatitis B virus (HBV). Two 16-mer peptides representing the N-terminal fusion peptide of the S protein and the internal fusion peptide in L protein were synthesized, and their membrane disrupting activities were characterized. The internal fusion peptide in L protein showed higher activity of liposome leakage and hemolysis of human red blood cells than the N-terminal fusion peptide of S protein. Also, the membrane disrupting activity of the extracellular domain of L protein significantly increased when the internal fusion peptide region was exposed to N-terminus by the treatment of V8 protease. These results indicate that the internal fusion peptide region of L protein could activate membrane fusion when it is exposed by proteolysis.

Dye removal from water using emulsion liquid membrane: Effect of alkane solvents on efficiency

  • Ghaemi, Negin;Darabi, Farzaneh;Falsafi, Monireh
    • Membrane and Water Treatment
    • /
    • 제10권5호
    • /
    • pp.361-372
    • /
    • 2019
  • Effect of different alkane based solvents on the stability of emulsion liquid membrane was investigated using normal alkanes (n-hexane, n-heptane, n-octane and n-decane) under various operating parameters of surfactant concentration, emulsification time, internal phase concentration, volume ratio of internal phase to organic phase, volume ratio of emulsion phase to external phase and stirring speed. Results of stability revealed that emulsion liquid membrane containing n-octane as solvent and span-80 (5 % (w/w)) as emulsifying agent presented the highest amount of emulsion stability (the lowest breakage) compared with other solvents; however, operating parameters (surfactant concentration (5% (w/w)), emulsification time (6 min), internal phase concentration (0.05 M), volume ratio of internal phase to organic phase (1/1), volume ratio of emulsion phase to external phase (1/5) and stirring speed (300 rpm)) were also influential on improving the stability (about 0.2% breakage) and on achieving the most stable emulsion. The membrane with the highest stability was employed to extract acridine orange with various concentrations (10, 20 and 40 ppm) from water. The emulsion liquid membrane prepared with n-octane as the best solvent almost removed 99.5% of acridine orange from water. Also, the prepared liquid membrane eliminated completely (100%) other cationic dyes (methylene blue, methyl violet and crystal violet) from water demonstrating the efficacy of prepared emulsion liquid membrane in treatment of dye polluted waters.

MATHEMATICAL MODELLING FOR THE AXIALLY MOVING MEMBRANE WITH INTERNAL TIME DELAY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • 제37권1호
    • /
    • pp.141-147
    • /
    • 2021
  • In [1], we studied the PDE system with time-varing delay. Time delay occurs due to loosening in a high-speed moving axially directed membrane (string, belt, or plate) at production. Our purpose in this work derives a mathematical model with internal time delay. First, we consider the physical phenomenon of axially moving membrane with respect to kinetic energy, potential energy and work done. By the energy conservation law in physics, we get the second order nonlinear PDE system with internal time delay.

공정압 변화에 따른 중공사막의 투과플럭스 특성 (Characteristic of the Permeation Flux of Hollow Fiber Membranes by Process Pressures Change)

  • 이용택;김남수;신동호
    • 멤브레인
    • /
    • 제17권4호
    • /
    • pp.318-328
    • /
    • 2007
  • 본 연구에서는 호소수의 정수처리공정 중 폴리술폰계 중공사막을 이용한 침지형(흡인압)과 외압형을 동시에 적용한 분리막 공정으로 압력 및 공경에 따른 투과플럭스의 변화에 관한 성능을 평가하고자 하였다. 침지형(흡인압) 공정의 압력에 따른 최대 투과 플럭스는 공경이 $0.3{\mu}m$에서 평균 282 LMH, $0.05{\mu}m$에서는 234 LMH를 나타내었으며 외압형(외압) 공정의 압력에 따른 최대 투과 플럭스는 공경이 $0.3{\mu}m$에서 평균 443 LMH, $0.05{\mu}m$에서는 522 LMH를 나타내었다. 또한, 흡인압과 외압을 동시에 적용한 공정의 압력에 따른 최대 투과 플럭스는 공경이 $0.3{\mu}m$에서 평균 674 LMH $0.05{\mu}m$에서는 648 LMH를 나타내었다. 따라서, 호소수를 이용한 정수처리공정에서 분리막으로 흡인압과 외압을 동시에 이용할 경우 단위 면적당 생산수를 최대로 할 수 있을 것으로 사료된다.

위산 환경에서 피막형 스텐트의 물성 변화 (Physical Properties of Covered Stent in Gastric Acid Environment: In Vitro Study)

  • 박성철;박낙순;김동곤;나재운;진윤태;조혜진;김은선;금보라;서연석;이홍식;전훈재;엄순호;김창덕;류호상
    • 폴리머
    • /
    • 제38권3호
    • /
    • pp.351-357
    • /
    • 2014
  • 위장관 종양 조직이 스텐트 내로 성장하는 것을 방지하는 피막형 스텐트가 개발되어 널리 사용되고 있으나 위산에 의한 막의 분해로 인해 스텐트 폐쇄나 파손이 있다. 이에 본 연구에서는 위산 환경하에서 막의 성분과 재질 농도에 따른 피막형 스텐트의 물성 변화와 안정성을 살펴보고자 하였다. 스텐트 막의 재질은 실리콘과 폴리우레탄을 사용하였고, 각각의 농도를 15%, 18%, 20%로 하여 제작된 스텐트를 pH 1.2 산성 용액에서 18주 동안 3주 간격으로 변화를 관찰하였다. 피막을 분석한 결과 동일 농도에서 비교하였을 때 실리콘이 폴리우레탄보다 두껍고 균일하게 코팅되었다. 인공 위액에 의한 폴리우레탄 피막의 분해가 실리콘 피막에 비해 심하였다. 반경 방향 팽창력의 크기는 실리콘 피막이 폴리우레탄 피막에 비해 상대적으로 컸다. 반경 방향 팽창력과 변형 회복력 모두 인공 위액에서의 침잠 기간이 경과함에 따라 점차 감소하였고, 폴리우레탄 피막 스텐트에서 감소율이 더 컸다. 결론적으로 실리콘 피막이 폴리우레탄에 비해 위산에 대해 안정성이 높음을 알 수 있었다.

Removal study of As (V), Pb (II), and Cd (II) metal ions from aqueous solution by emulsion liquid membrane

  • Dohare, Rajeev K.;Agarwal, Vishal;Choudhary, Naresh K.;Imdad, Sameer;Singh, Kailash;Agarwal, Madhu
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.201-208
    • /
    • 2022
  • Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water- in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2- ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).

막결합형 생물반응기(Membrane Bio-Reactor)의 막 오염 저감을 위한 고전압 펄스의 적용과 막 오염 저감 속도론적 해석 (Application of high voltage pulse for reduction of membrane fouling in membrane bio-reactor and kinetic approach to fouling rate reduction)

  • 김경래;김완규;장인성
    • 상하수도학회지
    • /
    • 제34권3호
    • /
    • pp.183-190
    • /
    • 2020
  • Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.

Removal of safranin from aqueous solution through liquid emulsion membrane

  • Lohiya, Roshni;Goyal, Arihant;Dohare, Rajeev Kumar;Agarwal, Madhu;Upadhyaya, Sushant
    • Membrane and Water Treatment
    • /
    • 제10권5호
    • /
    • pp.373-379
    • /
    • 2019
  • One of the real issues of the recent years is water contamination because of harmful synthetic dyes. Liquid Membranes (LM) resemble a promising alternative to the current separation processes, demonstrating various points of interest as far as effectiveness, selectivity, and operational expenses. The improvement of various Liquid Membranes designs has been a matter of examination by few researchers, particularly for the expulsion of dyes from aqueous solutions. The choice of organic surfactants plays an essential role in the efficiency of the dye removal. In LM design, the most significant step towards productivity is the decision of the surfactant type and its concentration. Liquid emulsion membrane (LEM) was used to remove safranin from aqueous solutions in which the emulsion was made with the help of D2EHPA as carrier, kerosene was used as a diluent and Span 80 (Sorbiton monooleate) was used as an emulsifying agent or surfactant. Various sorts of internal stages were utilized, to be specific sulphuric acid and sodium hydroxide. The impact of parameters influencing extraction efficiency such as pH of feed solution, concentrations of surfactant and emulsifying agent in membrane phase, volume ratio of internal phase to membrane phase, internal phase concentration, agitation speed and time of extraction were analyzed.

침지형 막분리 활성 슬러지법에 따른 막 오염 특성 (Characteristics of Fouling in a Submerged Membrane Bioreactor Activated Sludge Process)

  • 김대식;강종석;김기연;이영무
    • 멤브레인
    • /
    • 제11권4호
    • /
    • pp.170-178
    • /
    • 2001
  • 상전환 방법에 의해 PVC계 MF막을 제조하여 환성슬러지가 포함된 폐수 처리용 MBR (Membrane bioreactor)에 적용하였다. 막 제조시 첨가제의 농도에 따른 막 특성을 확인한 결과 첨가제의 농도가 증가할수록 기공 크기가 증가하였으며 친수화도 역시 향상되었다. MBR의 내부 환경변화에 따른 실험을 통해 제조한 막의 투과 성능 및 막에 발생하는 막 오염 거동을 조사하였다. 사상균의 생성으로 인한 Sludge bulking 시 막 오염 현상이 가속화되었으며, 이 때 각 시료의 Rc을 조사한 결과 CP-0 > CP-1.0 > CP-1.5의 순으로 나타났고, 정상상태와 비교하여 sludge busking시 Rc값은 3.5~7배가지 증가하였다. 표면 특성이나 투과 유속면에서 PVP 1.5 wt% (CP-1.5)를 첨가하였을 때가 가장 적합하였다. 평균 투과 유속은 시료 모두에서 12(${\pm}$2) L/$m^2$hr 정도였으며, 평균 COD 제거율은 98.8% 정도를 나타내었다 MBR 운전에 있어 sludge bulking시 사상균이 차지하는 비율과 미생물의 모양과 크기에 따라 막 오염은 가속화 되었고, 투과 유속 감소를 보였다. 따라서 막 여과 특성은 막의 친수화 정도와 MBR 내부 미생물의 성장 조건과 환경에 의해 결정되는 것을 알 수 있었다.

  • PDF