• Title/Summary/Keyword: Internal hex abutment

Search Result 22, Processing Time 0.02 seconds

Effects of abutment angulation and type of connection on the fracture strength of zirconia abutments (지대주 각도와 연결방식이 지르코니아 지대주의 파절강도에 미치는 영향)

  • Kim, Ho-Seong;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the fracture strength of straight and angled zirconia abutments for internal hex and external hex implants. Materials and methods: Twenty internal hex implants and 20 external hex implants were prepared. The prefabricated straight zirconia abutments and 17-degree-angled zirconia abutments were connected to those 40 implants. The specimens were classified into 4 groups depending on the connection type and abutment angulation; internal hex implant/straight abutment, group INS; internal hex implant/angled abutment, group INA; external hex implant/straight abutment, group EXS; external hex implant/angled abutment, group EXA. All specimens were loaded at a 30-degree angle with a crosshead speed of 1 mm/min using universal testing machine. The fracture loads were analyzed using 2-way ANOVA and independent t-test (${\alpha}=.05$). Results: The mean fracture load for INS was 955.91 N, 933.65 N for INA, 1267.20 N for EXS, and 1405.93 N for EXA. External hex implant showed a significantly higher fracture load, as compared to internal hex implant (P < .001). No significant differences in fracture loads were observed between the straight and angled abutment in internal hex implants (P = .747) and external hex implants (P = .222). Internal hexes of abutments were fractured horizontally in internal connection implants, while lingual cervical neck portions were fractured in external connection implants. Conclusion: The zirconia abutments with external hex implants showed significantly higher fracture strength than those with internal hex implants. However there was no difference in fracture strength between the straight and 17-degree-angled zirconia abutment connected to both implant systems.

Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure

  • Lee, Hyeonjong;Park, Si-Myung;Noh, Kwantae;Ahn, Su-Jin;Shin, Sangkyun;Noh, Gunwoo
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.567-576
    • /
    • 2020
  • Considerable controversy surrounds the choice of the best abutment type for implant prosthetics. The two most common structures are hex and non-hex abutments. The non-hex abutment typically furnishes a larger contact area between itself and the implant than that provided by a hex structure. However, when a hex abutment is loaded, the position of its contact area may be deeper than that of a non-hex abutment. Hence, the purpose of this study is to determine the different biomechanical behaviors of an internal bone-level implant based on the abutment type-hex or non-hex-and clinical crown length under static and cyclic loadings using finite element analysis (FEA). The hex structure was found to increase the implant and abutment stability more than the nonhex structure among several criteria. The use of the hex structure resulted in a smaller volume of bone tissues being at risk of hypertrophy and fatigue failure. It also reduced micromovement (separation) between the implant components, which is significantly related to the pumping effect and possible inflammation. Both static and fatigue analyses, used to examine short- and long-term stability, demonstrated the advantages of the hex abutment over the non-hex type for the stability of the implant components. Moreover, although its impact was not as significant as that of the abutment type, a large crown-implant ratio (CIR) increased bone strain and stress in the implant components, particularly under oblique loading.

Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants

  • Mohammed, Hnd Hadi;Lee, Jin-Han;Bae, Ji-Myung;Cho, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. MATERIALS AND METHODS. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. RESULTS. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). CONCLUSION. Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.

A retrospective randomized study of success rates according to abutment selection in DENTIS submerged implant with an internal hex connection (DENTIS 내부연결형 서브머지드 임플란트에서 지대주 선택에 따른 성공률의 후향적 연구)

  • Kim, Eun-Hee;Lee, Joeng-Eun;Hwang, Hee-Seong;Kim, Chul-Hoon;Kim, Jung-Han;Kim, Bok-Joo
    • The Journal of the Korean dental association
    • /
    • v.56 no.11
    • /
    • pp.605-614
    • /
    • 2018
  • PURPOSE. The purpose of this study is to determine the efficacy of the DENTIS submerged-type implant with an internal hex connection and to build corresponding abutment-selection criteria. MATERIAL AND METHODS. A total of 204 patients received submerged implant fixtures with an internal hex connection at the Dong-A University Hospital Dental clinic in Busan from January 2013 and May 2016. Three specific abutments, UCLA abutments, customized abutments, ready-made abutments, were randomly selected. Implant success was defined as the basis of the International Congress of Oral Implantologists(ICOI, 2007) criteria. The relationship between the implant success rate and the abutment factor was analyzed using the Kruskal-Wallis test(P<.05). RESULTS. A total of 508 implants were placed in 204 patients. After a mean observation period of 38.6 months, 493 out of 508 implants were in normal function, yielding an overall success rate of 97.05%. A total of 15 implants failed: 10 in the maxillary molar area, 4 in the mandibular molar area, and 1 in the mandibular incisal area. All of the implant failures occurred in a single-implant prosthesis, especially high in the maxillary molar area. The Kruskal-Wallis analysis showed that abutment selection has no significant correlation with implant failure(P>.05). CONCLUSION. DENTIS submerged implants with an internal hex connection showed predictable results with a success rate of 97.05%. It is no influence on the success rate in the selection of submerged implant abutment with an internal hex connection.

  • PDF

Correlation between microleakage and screw loosening at implant-abutment connection

  • Sahin, Cem;Ayyildiz, Simel
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.35-38
    • /
    • 2014
  • PURPOSE. This study aimed to evaluate the correlation between microleakage and screw loosening at different types of implant-abutment connections and/or geometries measuring the torque values before and after the leakage tests. MATERIALS AND METHODS. Three different abutment types (Intenal hex titanium, internal hex zirconium, morse tapered titanium) with different geometries were connected to its own implant fixture. All the abutments were tightened with a standard torque value then the composition was connected to the modified fluid filtration system. After the measurements of leakage removal torque values were re-measured. Kruskal-wallis test was performed for non-parametric and one-way ANOVA was performed for parametric data. The correlation was evaluated using Spearman Correlation Test (${\alpha}=0.05$). RESULTS. Significantly higher microleakage was found at the connection of implant-internal hex zirconium abutment. Observed mean torque value loss was also significantly higher than other connection geometries. Spearman tests revealed a significant correlation between microleakage and screw loosening. CONCLUSION. Microleakage may provoke screw loosening. Removing torque values rationally decrease with the increase of microleakage.

INFLUENCE OF IMPLANT-ABUTMENT INTERFACE DESIGN, IMPLANT DIAMETER AND PROSTHETIC TABLE WIDTH ON STRENGTH OF IMPLANT-ABUTMENT INTERFACE : THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (임플랜트의 지대주 연결방식, 임플랜트의 직경 및 지대주 연결부위의 직경 차이에 따른 응력분포에 관한 삼차원 유한요소분석)

  • Oh Se-Woong;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.393-404
    • /
    • 2003
  • Statement of problem. Higher incidence of prosthetic complications such as screw loosening, screw fracture has been reported for posterior single tooth implant. So, there is ongoing research regarding stability of implant-abutment interface. One of those research is increasing the implant diameter and prosthetic table width to improve joint stability. In another part of this research, internal conical type implant-abutment interface was developed and reported joint strength is higher than traditional external hex interface. Purpose. The purpose of this study is to compare stress distribution in single molar implant between external hex butt joint implant and internal conical joint implant when increasing the implant diameter and prosthetic table width : 4mm diameter, 5mm diameter, 5mm diameter/6mm prosthetic table width. Material and method. Non-linear finite element models were created and the 3-dimensional finite element analysis was performed to see the distribution of stress when 300N static loading was applied to model at $0^{\circ},\;15^{\circ},\;30^{\circ}$ off-axis angle. Results. The following results were obtained : 1. Internal conical joint showed lower tensile stress value than that of external hex butt joint. 2. When off-axis loading was applied, internal conical joint showed more effective stress distribution than external hex butt joint. 3. External hex butt joint showed lower tensile stress value when the implant diameter was increased. 4. Internal conical joint showed lower tensile stress value than external hex butt joint when the implant diameter was increased. 5. Both of these joint mechanism showed lower tensile stress value when the prosthetic table width was increased. Conclusion. Internal conical joint showed more effective stress distribution than external hex joint. Increasing implant diameter showed more effective stress distribution than increasing prosthetic table width.

Screw Loosening of Various Implant Systems (수종의 임플랜트 시스템의 나사풀림에 관한 연구)

  • Ahn, Jin-Soo;Cho, In-Ho;Lim, Ju-Hwan;Lim, Heon-Song
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.2
    • /
    • pp.81-91
    • /
    • 2002
  • Dental implant systems have shown many post-surgical problems and One of the most frequent problem is screw loosening. To reduce screw loosening, a number of methods have been tried and recently fundamental modification of fixture-abutment connection structure was developed and used the most frequently. Former implant system structure, such as Br${\aa}$nemark, had external hex with the height of 0.7 mm and later, fixture with external hex of 1.0 mm height and internal hex structure were developed. In addition, the method of morse taper application was introduced to reduce screw loosening. In this study, the level of screw loosening of each implant systems was compared based on the vibration loosening measurement of abutment screw of each implant systems. Analysis of measured value was performed using 3 kinds of methods, (i) Percentage of average of initial 3 times loosening-torque value(initial loosening value) to tightening-torque of 30 Ncm, (ii) Percentage of loosening-torque value after 200 N strength loaded(experimental value) to initial loosening value and (iii) Percentage of experimental value to 30 Ncm of tightening-torque. Each result of analyses shows the value of initial loosening, loosening by repetitive load and final loosening level. The results of this study were as follows. (1) Percentage of initial loosening value to tightening-torque was increased in order of 0.7 mm external hex, 1.0 mm external hex, internal hex and internal taper and all values between each groups showed statistical significance (p<0.05). (2) Percentage of experimental value to initial loosening value was increased in order of internal hex, 0.7 mm external hex, 1.0 mm external hex and internal taper. Value of internal taper showed significant difference with that of 0.7 mm external hex and internal hex (p<0.05). (3) Percentage of experimental value to tightening torque was increased in order of 0.7 mm external hex, 1.0 mm external hex, internal hex and internal taper. Values of all groups showed statistical significance (p<0.05) except between the groups of 1.0 mm external hex and internal hex. Based on those results, there was no significant difference of loosening-torque by repetitive loading except internal taper. It is supposed that implant system with high resistant capability against initial loosening could be recommended for clinical use. In addition, in case of single implant restoration, 1.0 mm external hex or internal hex could be recommended rather than 0.7 mm external hex, and the use of internal taper would be the most useful way to reduce screw loosening.

Considerations in implant crestal module to preserve peri-implant tissue (임플란트 주위 조직 보존을 위한 임플란트 경부의 디자인에 관한 고찰)

  • Kim, Hong-Jun;Kim, Jee-Hwan;Kim, Sung-Tae;Lee, Jae-Hoon;Park, Young-Bum
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.346-353
    • /
    • 2011
  • Purpose: The peri-implant soft tissue is remodeled by the initial marginal bone resorption affecting the prognosis and esthetic result of treatment. Thus various designs on implant neck design are studied to preserve peri-implant bone. The purpose of this study is to review on the causes of initial marginal bone resorption, the configuration of peri-implant soft tissue, and the implant crestal module favorable in preserving peri-implant tissue. Materials and methods: The studies on the causes of initial marginal bone resorption and the implant crestal modules are researched and reviewed using Pubmed database. The implant crestal modules including one piece and two-piece implant, internal and external hex abutment, taper and butt joint connection, scalloped design abutment, and platform switching concept are reviewed. Results: A number of clinical and experimental studies preferred one piece implant to two-piece in preserving initial peri-implant tissue. For two piece implants, internal hex abutment and taper joint connection appear more favorable than external hex abutment and butt joint connection relatively. Controversial issues still exist on scalloped design requiring more studies on it. Although the rationale is not certain, the concept of platform switching seems favorable in preserving initial peri-implant tissue based on clinical and experimental studies. Conclusion: Each implant crestal module contains its own advantages and disadvantages with various controversial issues. In the aspect of preservation of initial peri-implant tissue, however, one-piece implant seems beneficial. In cases when two-piece implant is more appropriate due to prosthodontic concerns or any other problems, the application of platform switching concept, internal connection abutment, and taper joint connection may be favorable for the preservation of peri-implant tissues.

Joint stability of internal conical connection abutments with or without hexagon indexes: an in vitro study (내부연결 원추형 임플란트의 육각구조의 유무에 따른 연결부 안정성: 실험적 연구)

  • Lee, Sang-Woon;Cha, Min-Sang;Lee, Ji-Hye;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.95-103
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the axial displacement of the hexagonal and conical abutment in internal conical connection implant after screw tightening and cyclic loading. Materials and Methods: Internal conical connection implants were divided into two groups (n = 10): group HEX, hexagonal abutment; and group CON, conical 2-piece abutments. The axial displacement and removal torque values were measured after 30 Ncm torque tightening and 250N loading test of 100,000 cycles. The Student t test with 5% significance level was used to evaluate the data. Results: HEX group demonstrated significantly higher axial displacement values after 30 Ncm tightening in comparison to the CON group (P < 0.05). No significant difference was found in axial displacement after cyclic loading (P = 0.052). Removal torque loss before and after the cyclic loading both revealed no significant difference between groups (P = 0.057 and P = 0.138). Removal torque value decreased after cyclic loading in both groups (P < 0.05). Conclusion: Overall, both abutment with or without hexagon index presented similar biomechanical performance except HEX group demonstrated significantly more axial displacement after applying tightening torque.

A STUDY OF THE ANTI-ROTATING INNER POST SCREW SYSTEM AS A MEANS OF PREVENTING ABUTMENT SCREW LOOSENING (회전 방지용 Post Screw 시스템의 임플랜트 지대나사풀림 방지효과에 관한 연구)

  • Kim Jong-Hui;Lim Ju-Hwan;Cho In-Ho;Lee Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.671-683
    • /
    • 2005
  • Statement of problem: The most commonly reported problem associated with dental implant restoration is the loosening of the screws. Purpose: This study compared the efficacy of an implant system incorporating an anti-rotational locking sleeve(Anti-Rotating Inner Post Screw System(ARIPS-system)) with other, traditional implant systems as a means of minimizing vibration loosening. Materials and methods: Three implant systems were examined; the conventional external hex type, the ARIPS-system, and the internal taper type implant system 30 specimens(10 samples per group)were fabricated and each abutment screw was secured to the implant future with 32Ncm of torque force and loosening torque was measured using a Torque Gauge. The procedure was repeated 3 times, recording initial loosening torque each time. The re-tightened abutment screw was subjected to a cyclic load having a maximum forte of 200N and minimum of 20N at 2Hz over a period of 12,600 cycles. after which the loosening torque was measured. Measured values were calaulated for statistical analysis. Analysis of measured value was performed by 3 methods: (i) as a percentage average of the initial 3 loosening-torque values(initial loosening value) to the tightening torque of 32Ncm, (ii) as a percentage of the loosening torque value after a load of 200N(experimental value) to the initial loosening value, and (iii) as a percentage of the experimental value to the 32Ncm of tightening torque. The analyses shows the amount of initial loosening at the screw, loosening by repetitive load and the the final loosening value. Results: The results of this study were as follows (1) Percentage of initial loosening value to tightening-torque was increased in order of external hex, ARIPS-system and internal taper and all values between each groups showed statistical significance (p<0.05). (2) Percentage of experimental value to initial loosening value was increased in order of external hex, ARIPS-system and internal taper. Value of internal taper showed significant difference with those of external hex and ARIPS-system (p<0.05). (3) Percentage of experimental value to tightening torque was increased in order of external hex, ARIPS-system and internal taper and all values between each groups showed statistical significance (p<0.05). Conclusion: The results of the analysis of the final loosening level value, which are closely correlated to clinical use, show that the ARIPS-system can be a useful means of minimizing abutment screw loosening when compared to the external hex type system. Although further clinical studies need to be made, the ARIPS-system should be considered to maximize the long-term success of the implant prosthesis.