• Title/Summary/Keyword: Internal flow analysis

Search Result 989, Processing Time 0.026 seconds

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.

Internal Flow Analysis of a Fuel Pressurized Blower for Fuel Cell System (연료전지용 연료승압 블로어 내부유동장 평가)

  • Choi, Ka-Ram;Jang, Choon-Man
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This paper describes an internal flow characteristics of a fuel pressurized blower, used for 1kW domestic fuel cell system. To analyze the flow field inside the diaphragm cavity, compressible unsteady numerical simulation is introduced. SST model with scalable wall function is employed to estimate the eddy viscosity. Moving mesh system is applied to the numerical analysis for describing the volume change of a diaphragm cavity in time. Throughout numerical simulation with the modeling of the inlet and outlet valves in a diaphragm cavity, unsteady nature of an internal flow is successfully analyzed. Force variations on the lower plate of a diaphragm cavity are evaluated in time. It is found that the driving force at the suction stage of a diaphragm cavity is more necessary than that at the discharging stage.

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

Internal Flow Analysis on a Mixed Flow Pump for Developing Marine Mineral Resources (해양광물자원 개발을 위한 사류형펌프의 내부유동 해석)

  • Lee, J.W.;Choi, Y.D.;Lee, Y.H.;Yoon, C.H.;Park, J.M.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.11-16
    • /
    • 2010
  • The development of lifting pumps that lift minerals to a mining vessel are one of the vital parts of the commercial mining process. The purpose of this study is to investigate internal flow and its effect on the performance of a mixed flow pump in order to improve the pump's performance. Numerical analysis was performed by commercial code of ANSYS CFX-11 based on flow rate and length of flexible hose. The rated rotational speed of the impeller is 1750rpm. For taking into account the turbulence, k-$\omega$ SST model was selected to guarantee more accurate prediction of flow separation. The simulated results are in good agreement with the experimental results and showed that its efficiency and the head of the pump are related mainly to the flow rate and the length of flexible hose. A lesser flow rate caused more secondary flow through the guide vane passage. The length of flexible hose and flow rate exert much more influence on the pump's performance than the shape of the flexible hose.

Spectral Element Vibration Analysis of the Pipeline Conveying Internal Flow (내부유동을 갖는 파이프 진동의 스펙트럴요소해석)

  • Oh, Hyuck-Jin;Kang, Kwan-Ho;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.294-301
    • /
    • 2003
  • It is of often important to accurately predict the flow-induced vibration or dynamic instability of a pipeline conveying internal high speed flow in advance, which requires a very accurate solution method. In this study, first the dynamic equations for the axial and transverse vibrations of a pipeline are reduced from a set of pipe-dynamic equations derived in the previous study and then the spectral element model is formulated. The accuracy of the spectral element method (SEM) is then verified by comparing its results with the results obtained by finite element method (FEM). It is shown that the present spectral element model provides very accurate solutions by using an extremely small number of degrees-of-freedom when compared with FEM. The dynamics of a sample pipeline is investigated with varying the axial tension and the speed of internal flow.

Flow Analyses in a Cross-Flow Fan (횡류팬 내부의 유동해석)

  • Lee H G.;Park H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.65-70
    • /
    • 2002
  • Cross-Flow Fan(CFF) are widely used lot industrial equipments and household electric appliances. A design method for CFFs, however, has not been well established because of the complexity of the internal flow. Numerical analysis was performed by using STAR-CD. In this study present the internal flow of CFF, which has varies pin number, and their flowrate were compared

  • PDF

Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine (횡류수차 노즐형상이 성능과 내부유동에 미치는 영향)

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

Spray characteristics of effervescent atomizer with internal flows (Effervescent atomizer의 내부 유동에 따른 분무특성)

  • Ku, K.W.;Hong, J.G.;Kim, J.H.;Lee, C.W.;Park, C.D.;Lim, B.J.;Chung, K.Y.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.123-124
    • /
    • 2012
  • Effervescent atomizer in which the liquid is ejected from nozzle with bubble caused by gas injection into the liquid is one of twin-fluid atomizers. Effervescent atomizer is operated with the lower injection pressure and the smaller air flow rate when compared with those of other twin-fluid atomizers. In this study, we attempted experiment study to investigate the atomization characteristics of effervescent atomizer related with the internal flow condition. The nozzle was made with acrylic material to investigate the nozzle internal flow. The macroscopic spray analysis was conducted with internal flow images and spray images. Furthermore, SMD was measured by using the laser diffraction method. According to this study, the internal flow condition changed from bubbly flow to annular flow as the air-liquid mass ratio(ALR) increases. At that time, the atomization characteristics were improved.

  • PDF

CFD Analysis of Pressure Pulsation and Internal Flow for a Positive Displacement Hydraulic Turbine (CFD에 의한 용적형수차의 압력맥동 및 내부유동 해석)

  • Choi, Young-Do;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.687-693
    • /
    • 2007
  • It has been known that one of the main obstacles of improving the performance of positive displacement hydraulic turbine is pressure pulsation which occurs at the regions upstream and downstream of the turbine. In order to suppress the pressure pulsation. occurrence reason of the pressure pulsation should be understood in detail Therefore. this study aims to establish a CFD analysis method by which the phenomena of unsteady pressure pulsation can be examined with high accuracy. Internal flow field of the turbine is modeled simply to generalize the relation between the pressure pulsation and internal flow. The results show that the Present CFD method adopting unsteady calculation can be applied successfully to the analysis of the Phenomena of Pressure Pulsation. Occurrence of the Pressure pulsation is due to the difference of the rotational speed of turbine rotors When driving rotor rotates by uniform speed and fellowing rotor rotates by variable speed, very large Pressure pulsation occurs within the turbine periodically.