• 제목/요약/키워드: Internal exposure dose

검색결과 158건 처리시간 0.026초

간접흡연의 정량적 노출측정 방법의 고찰 (Review of Various Quantitative Methods to Measure Secondhand Smoke)

  • 임수길;김정윤;임완령;손홍지;이기영
    • 한국환경보건학회지
    • /
    • 제35권2호
    • /
    • pp.100-115
    • /
    • 2009
  • Secondhand smoke (SHS) is one of major public health threats. Since secondhand smoke is complex mixture of toxic chemicals, there has been no standardized method to measure SHS quantitatively. The purpose of this manuscript was to review various quantitative methods to measure SHS. There are two different methods: air monitoring and biological monitoring. Air monitoring methods include exhaled carbon monoxide level, ambient fine particulates, nicotine and 3-ethenylpyridine. Measurement of fine particulates has been utilized due to presence of real-time monitor, while fine particulates can have multiple indoor sources other than SHS. Ambient nicotine and 3-EP are more specific to SHS, although there is no real-time monitor for these chemicals. Biological monitoring methods include nicotine in hair, cotinine in urine, NNK in urine and DNA adducts. Nicotine in hair can provide chronic internal dose, while cotinine in urine can provide acute dose. Since biological monitoring can provide total internal dose, identification of specific exposure source may be difficult. NNK in urine can indicate carcinogenicity of the SHS exposure. DNA adducts can provide overall cancer causing exposure, but not specific to SHS. While there are many quantitative methods to measure SHS, selection of appropriate method should be based on purposes of assessment. Application of accurate and appropriate exposure assessment method is important for understanding health effects and establishing appropriate control measures.

Optimization of In-vivo Monitoring Program for Radiation Emergency Response

  • Ha, Wi-Ho;Kim, Jong Kyung
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.333-338
    • /
    • 2016
  • Background: In case of radiation emergencies, internal exposure monitoring for the members of public will be required to confirm internal contamination of each individual. In-vivo monitoring technique using portable gamma spectrometer can be easily applied for internal exposure monitoring in the vicinity of the on-site area. Materials and Methods: In this study, minimum detectable doses (MDDs) for $^{134}Cs$, $^{137}Cs$, and $^{131}I$ were calculated adjusting minimum detectable activities (MDAs) from 50 to 1,000 Bq to find out the optimal in-vivo counting condition. DCAL software was used to derive retention fraction of Cs and I isotopes in the whole body and thyroid, respectively. A minimum detect-able level was determined to set committed effective dose of 0.1 mSv for emergency response. Results and Discussion: We found that MDDs at each MDA increased along with the elapsed time. 1,000 Bq for $^{134}Cs$ and $^{137}Cs$, and 100 Bq for $^{131}I$ were suggested as optimal MDAs to provide in-vivo monitoring service in case of radiation emergencies. Conclusion: In-vivo monitoring program for emergency response should be designed to achieve the optimal MDA suggested from the present work. We expect that a reduction of counting time compared with routine monitoring program can achieve the high throughput system in case of radiation emergencies.

국내 원전에서 $^{131}I$ 내부 흡입 에 따른 섭취량 산정과 내부피폭 방사선량 평가 경험 몇 개선방향에 대한 연구 (The Experience on Intake Estimation and Internal Dose Assessment by Inhalation of Iodine-131 at Korean Nuclear Power Plants)

  • 김희근;공태영
    • Journal of Radiation Protection and Research
    • /
    • 제34권3호
    • /
    • pp.129-136
    • /
    • 2009
  • 국내 원전의 계획예방정비기간 중에 원자로계통의 개방과정에서 원자로건물내 공기 중으로 누설된 $^{131}I$의 체내 흡입으로 원전종사자의 내부피폭이 발생하였다. 이에 따라 원전에서 보유하고 있는 전신계측기(Whole body counter)를 이용하여 내부방사능을 측정하였다. 이들 측정값을 근거로 국제방사선방호위원회(ICRP)의 내부피폭 선량평가 지침을 적용하여 섭취량을 산정하고, 내부 피폭 방사선량을 평가하였다. $^{131}I$은 체내에서 섭취와 배설이 빠르고 갑상선으로 재축적이 일어나기 때문에 섭취 후 측정시점에 따라 섭취량이 차이를 보였다. 또한 ICRP 간행물에서 $^{131}I$의 전선에 대한 섭취잔류분율 자료를 제공하고 있지 않아 갑상선 섭취잔류분율 자료를 이용함으로써 섭취량 평가에서 오차를 나타내었다. 이에 따라 수계산과정으로 섭취량을 산정하고 예탁유효선량을 평가하였다. 한편 전선에 대한 섭취잔류분율을 새로 계산하였으며, 이 결과를 검증하였다. 또한 국제적으로 이용되고 있는 내부 피폭 선량평가 전신코드들 이용하여 섭취량 산정과 내부피폭 선량평가 평가결과에 대한 비교 계산이 병행하여 이루어졌다.

공기 중 벤젠과 소변 중 뮤콘산과의 상관성 연구 (Study of correlation between airborne benzene and urinary trans,trans-muconic acid in Petrochemical industry processes)

  • 주귀돈;이종성;최성봉;신재훈
    • 한국산업보건학회지
    • /
    • 제16권4호
    • /
    • pp.356-363
    • /
    • 2006
  • To investigate the exposure effect of benzene, we measured airborne benzene as external doses, uninary tt-muconic acid as an internal dose of benzene exposure and analyzed the relationship between tt-muconic acid concentration and benzene exposure. The study population of eight businesses included 157 workers(87 workers in field; exposure group, 70 workers in board; control group) who produce or use benzene in petrochemical industry. The concentrations of airborne benzene were evaluated by personal samples and urine was sampled at the pre and end shift. Urinary t,t-muconic acid as internal dose was to analyze the relationship with airborne benzene. The geometric means(GM) of airborne benzene was 0.0231 ppm(range ND-1.0471 ppm) in exposure group and 0.0147 ppm(range ND-0.3162 ppm) in control group. The geometric means(GM) of urinary t,t-muconic acid at end-shift was $196.8{\pm}2.23{\mu}g/g$ creatinine in exposure group and $149.2{\pm}2.08{\mu}g/g$ creatinine in control group. There was significant correlation between the airborne concentration of benzene and the urinary concentration of t,t-muconic acid( r=0.711, p<0.01). From the results of stepwise multiple regression analysis about t,t-muconic acid at end-shift, significant independents was airborne benzene. In this study, there were significant correlation between the urinary concentration of t,t-muconic acid and the airborne concentration of benzene. More extensive studies ruling out healthy worker effect is needed.

Genetic radiation risks: a neglected topic in the low dose debate

  • Schmitz-Feuerhake, Inge;Busby, Christopher;Pflugbeil, Sebastian
    • Environmental Analysis Health and Toxicology
    • /
    • 제31권
    • /
    • pp.1.1-1.13
    • /
    • 2016
  • Objectives To investigate the accuracy and scientific validity of the current very low risk factor for hereditary diseases in humans following exposures to ionizing radiation adopted by the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. The value is based on experiments on mice due to reportedly absent effects in the Japanese atomic bomb (A-bomb) survivors. Methods To review the published evidence for heritable effects after ionising radiation exposures particularly, but not restricted to, populations exposed to contamination from the Chernobyl accident and from atmospheric nuclear test fallout. To make a compilation of findings about early deaths, congenital malformations, Down's syndrome, cancer and other genetic effects observed in humans after the exposure of the parents. To also examine more closely the evidence from the Japanese A-bomb epidemiology and discuss its scientific validity. Results Nearly all types of hereditary defects were found at doses as low as one to 10 mSv. We discuss the clash between the current risk model and these observations on the basis of biological mechanism and assumptions about linear relationships between dose and effect in neonatal and foetal epidemiology. The evidence supports a dose response relationship which is non-linear and is either biphasic or supralinear (hogs-back) and largely either saturates or falls above 10 mSv. Conclusions We conclude that the current risk model for heritable effects of radiation is unsafe. The dose response relationship is non-linear with the greatest effects at the lowest doses. Using Chernobyl data we derive an excess relative risk for all malformations of 1.0 per 10 mSv cumulative dose. The safety of the Japanese A-bomb epidemiology is argued to be both scientifically and philosophically questionable owing to errors in the choice of control groups, omission of internal exposure effects and assumptions about linear dose response.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

원전 방사성 콘크리트 기계적 절단의 방사성 에어로졸에 대한 작업자 내부피폭선량 평가 (Internal Dose Assessment of Worker by Radioactive Aerosol Generated During Mechanical Cutting of Radioactive Concrete)

  • 박지혜;양원석;채낙규;이민호;최성열
    • 방사성폐기물학회지
    • /
    • 제18권2호
    • /
    • pp.157-167
    • /
    • 2020
  • 원전 해체 공정 중 다량의 콘크리트 방사성 폐기물의 절단 과정에서 불가피하게 방사성 에어로졸이 생성된다. 방사성 에어로졸은 인체 호흡기 흡착에 의한 내부피폭을 유발하기 때문에 작업자의 방사선 방호를 위한 내부피폭평가가 필수적으로 시행되어야 한다. 그러나 실제 작업환경의 에어로졸 특성값을 사용하기에는 선행 연구가 미비하며 콘크리트에 포함된 방사성 핵종의 수가 많기 때문에 정확한 작업자 내부피폭평가를 위해서는 상당한 시간과 인력이 필요하다. 따라서, 본 연구에서는 사전 연구된 콘크리트 에어로졸 특성값을 활용하여 원전 해체 전 절단 작업자의 내부 피폭량을 빠르게 예측할 수 있는 새로운 방법론을 제시하고자 한다. 본 연구팀은 콘크리트 절단 시 발생하는 사전 연구에서 발표된 에어로졸의 수농도 크기 분포데이터를 뉴턴-랩슨법을 이용하여 피폭평가 계산에 필요한 방사능중앙 공기중역학직경(Activity Median Aerodynamic Diameter)값으로 변환하였다. 또한 원전 정지 10년 후 비방사능 값을 ORIGEN code로 계산하였으며, 최종적으로 핵종별 예탁유효선량을 IMBA 프로그램을 이용하여 계산하였다. 핵종별 예탁유효선량값을 비교한 결과 152Eu에 의한 최대 예탁유효선량은 전체 선량값의 83.09%를 차지하고, 152Eu를 포함한 상위 5개 원소(152Eu, 154Eu, 60Co, 239Pu, 55Fe)의 경우 최대 99.63%를 차지함을 확인하였다. 따라서 원전 해체 전 콘크리트의 구성 원소 중 상위 5개 주요 원소 측정을 먼저 시행한다면 더 빠르고 원활한 방사능 피폭관리 및 해체 작업 안전성 평가가 가능할 것으로 판단된다.

Identification and Application of Biomarkers in Molecular and Genomic Epidemiologic Research

  • Lee, Kyoung-Mu;Han, So-Hee;Park, Woong-Yang;Kang, Dae-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • 제42권6호
    • /
    • pp.349-355
    • /
    • 2009
  • Biomarkers are characteristic biological properties that can be detected and measured in a variety of biological matrices in the human body, including the blood and tissue, to give an indication of whether there is a threat of disease, if a disease already exists, or how such a disease may develop in an individual case. Along the continuum from exposure to clinical disease and progression, exposure, internal dose, biologically effective dose, early biological effect, altered structure and/or function, clinical disease, and disease progression can potentially be observed and quantified using biomarkers. While the traditional discovery of biomarkers has been a slow process, the advent of molecular and genomic medicine has resulted in explosive growth in the discovery of new biomarkers. In this review, issues in evaluating biomarkers will be discussed and the biomarkers of environmental exposure, early biologic effect, and susceptibility identified and validated in epidemiological studies will be summarized. The spectrum of genomic approaches currently used to identify and apply biomarkers and strategies to validate genomic biomarkers will also be discussed.

유암수술후 방사선치료시 $^{60}Co\;\gamma$선과 전자선 조사야 접합부 선량분포에 관한 연구 (A Study on Dobe Distribution at the Junction of $^{60}CO\;\gamma-Ray$ and Elecron Beam in Postoperative Radiotherapy of Breast Cancer)

  • 강위생;허승재;하성환
    • Radiation Oncology Journal
    • /
    • 제2권1호
    • /
    • pp.149-153
    • /
    • 1984
  • Postoperative radiotherapy of breast cancer makes it possible to reduce loco-regional recurrence of breast cancer. The treatment technique, which can reduce the low-dose region at the junction and lung, is required. To produce proper dose distribution of internal mammary chain and chest wall, authors tried to find the method to expose $^{60}Co\;\gamma-ray$ on internal mammary region and 7MeV electron on chest wall. Exposure time of $^{60}Co\;\gamma$ and monitor unit of 9MeV were selected so that dose of $^{60}Co$ at 4cm depth was the same as that of 7Mev electron at $80\%$ dose depth. The position and direction of electron beam were changed for $^{60}Co$ beam: $0^{\circ},\;5^{\circ}$ for 0cm seperation; $0^{\circ},\;5^{\circ},\;10^{\circ}$ for 0.5cm seperation; $5^{\circ},\;10^{\circ},\;15^{\circ}$ for 1cm seperation. The results are as followings. 1. When the seperation of two fields was increased, dose on the axis of $^{60}Co$ beam was increased and dose at the junction region decreased while the volume of lung to be exposed to high dose and hot spot size were irregularly changed. 2. The dose distribution in the target volume of internal mammary and chest wall was most ideal when the seperation of two fields was $0\~0.5cm$ and the direction of electron beam was parallel to $^{60}Co$ beam.

  • PDF

Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia

  • Abdullahi, Shittu;Ismail, Aznan Fazli;Samat, Supian
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.325-336
    • /
    • 2019
  • The activity concentrations of $^{226}Ra$, $^{232}Th$, and $^{40}K$ from 102 building materials samples were determined using a high-purity germanium (HPGe) detector. The activity concentrations were evaluated for possible radiological hazards to the human health. The excess lifetime cancer risks (ELCR) were also estimated, and the average values were recorded as $0.42{\pm}0.24{\times}10^{-3}$, $3.22{\pm}1.83{\times}10^{-3}$, and $3.65{\pm}1.85{\times}10^{-3}$ for outdoor, indoor, and total ELCR respectively. The activity concentrations were further subjected to RESRAD-BUILD computer code to evaluate the long-term radiation exposure to a dweller. The indoor doses were assessed from zero up to 70 years. The simulation results were $92{\pm}59$, $689{\pm}566$, and $782{\pm}569{\mu}Sv\;y^{-1}$ for indoor external, internal, and total effective dose equivalent (TEDE) respectively. The results reported were all below the recommended maximum values. Therefore, the radiological hazards attributed to building materials under study are negligible.