• Title/Summary/Keyword: Internal electric field

Search Result 139, Processing Time 0.026 seconds

Implement High Speed Bidirectional pulse power supply(BPPS) for plating

  • Kim, Tae-Eon;Park, Jong-Oh;Cho, Yong-Seong;Lee, Ihn-Yong;Kim, Young-Han;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.1-37
    • /
    • 2001
  • Electric plating is used in various industry field. Specially, pulse plating is able to deposit material at high current density compared to conventional DC plating. For example, pulse plating can get more fine grain, can improve adhesion and metal distribution and current efficiency, can reduce internal stress and crack. Therefore, we developed bidirection pulse power supply(BPPS) which has high speed pulse current and high current density and improve deposition quality and increase plating speed in this paper. BPPS(Bidirection pulse power supply) needs high speed rising time, falling time and output current accuracy. BPPS consists of rectifier part, chopper part, invertor part, and control part. Rectifier part changes outprt current direction.

  • PDF

Analysis of Piezoelectric Ceramic Multi-layer Actuators Based on the Electro-mechanical Coupled Meshless Method (전기-기계 결합 하중을 받는 압전 세라믹 다층 작동기의 무요소 해석)

  • Kim, Hyun-Chul;Guo, Xianghua;Kim, Won-Seok;Fang, Daining;Lee, Jung-Ju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. The method employs an element free Galerkin (EFG) formulation and an enriched basic function as well as special shape functions that contain discontinuous derivatives. Based on the moving least squares (MLS) interpolation approach, The EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method yields an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. Another example is to study a ceramic multilayer actuator. The proposed model was found to be accurate in the simulation of stress and electric field concentrations due to the abrupt end of an internal electrode.

Development of the KSTAR Superconductor

  • Lim B.S.;Choi J.Y.;Lee S.I.;Kim D.J.;Park W.W.;Woo I.S.;Song Y.J.;Song N.H.;Kim C.S.;Lee D.G.;Kim K.P.;Park H.T.;Joo J.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.25-28
    • /
    • 2006
  • The magnet system of KSTAR(korean Superconducting Tokamak Advanced Research) is consisted of 16 TF (Toroidal Field) coils and 14 PF (Poroidal Field) coils. Internal cooling CICC(Cable in Conduit Conductor) type conductor is used for both of TF and PF coil systems. The conduit material for $Nb_3Sn$ cable is Incoloy 908 and 316LN stainless-steel was used as conduit material for NbTi cable. $Nb_3Sn$ CICC is used for all TF coils and PF1-5 coils while NbTi CICC is used for PF6 and 7 coils. $Nb_3Sn$ and NbTi strands were made for KSTAR superconducting strand. They are satisfied with KSTAR superconducotr requirements. The $Nb_3Sn$ strands supplied from three companies; MELCO (Mitsubishi Electric Co.), OAS (Outokumpu Advanced Superconductor) and KAT (Kiswire Advanced Technology) were used. A special CICC jacketing system is developed for the KSTAR CICC fabrication which uses the tube-mill process consisted of forming, welding, sizing and squaring procedures. The. procedures for cabling and jacketing of CICC for TF and PF coils and their results including the geometrical specification and characteristics of strands are described.

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

Electrical Characteristic of a Suspended Porcelain Insulator with a 154 kV Transmission Line (154 kV 송전선로 자기재 현수 애자의 전기적 특성 규명에 관한 연구)

  • Jeon, Seongho;Choi, In-Hyuk;Kim, Taeyong;Lee, Youn-Jung;Koo, Ja-Bin;Son, Ju-Am;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.56-59
    • /
    • 2020
  • Porcelain insulators are typically exposed to surface discharge and lightning impulse in service. This study investigates the insulation characteristics of the external and internal discharges of a porcelain insulator with respect to its flashover for a 154 kV transmission line. The experiments are also conducted using a wet flashover test and an impulse test based on the external discharge and the internal penetration, to classify the flashover voltage-time curve of the porcelain insulator. When an impulse with a strength of 2,500 kV/㎲ was applied three times to 6.5 mm ceramic samples, electrical penetration of approximately 70% occurred. The impulse experiment confirmed that the electrical penetration inside the porcelain insulator coincided with the area where the electric field was concentrated. The wet flashover voltage test revealed that the flashover threshold voltage increases by approximately 7% after cleaning of the surface.

Characterization of Optical Properties of Light-Emitting Diodes Grown on Si (111) Substrate with Different Quantum Well Numbers and Thicknesses

  • Jang, Min-Ho;Go, Yeong-Ho;Go, Seok-Min;Yu, Yang-Seok;Kim, Jun-Yeon;Tak, Yeong-Jo;Park, Yeong-Su;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.313-313
    • /
    • 2012
  • In recent years there have been many studies of InGaN/GaN based light emitting diodes (LEDs) in order to progress the performance of luminescence. Many previous literatures showed the performance of LEDs by changing the LED structures and substrates. However, the studies carried out by the researchers so far were very complicated and sometimes difficult to apply in practice. Therefore, we propose one simple method of changing the thickness and the numbers of multiple quantum wells (MQWs) in order to optimize their effects. In our research, we investigated electrical and optical properties by changing the well thickness and the number of quantum well (QW) pair in LED structures by growing the structure -inch Si (111) wafer. We defined the samples from LED_1 to LED_3 according to MQW structure. Samples LED_1, LED_2 and LED_3 consist of 5-pair InGaN/GaN (3.5 nm/ 4.5 nm), 5-pair InGaN/GaN (3 nm/4.5 nm) and 7-pair InGaN/GaN (3.5 nm/4.5 nm), respectively. We characterized electrical and optical properties by using electroluminescence (EL) measurement. Also, Efficiency droop was analyzed by calculating external quantum efficiency (EQE) with varying injection current. The EL spectra of three samples show different emission wavelength peaks, FWHM and the blueshift of wavelength caused by screening the internal electric field because of the effect of different MQW structure. The results of optical properties show that the LED_2 sample reduce the internal electric field in QW than LED_1 from EL spectra. the increase in the number of QW pairs reduces the strain and increase the In composition in MQW. And, the points of efficiency droop's peak show different trend from LED_1 to LED_3. It is related with the carrier density in active region. Thus, from the results of experiments, we are able to achieve high performance LEDs and a reduction of efficiency droop and emission wavelength blueshift by optimizing MQWs structure.

  • PDF

A study on electroreflectance in undoped n-GaAs (불순물이 첨가되지 않은 n-GaAs에서의 Electroreflectance에 관한 연구)

  • 김인수;김근형;손정식;이철욱;배인호;김상기
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.136-142
    • /
    • 1997
  • An/n-GaAs(100) Schottky barrier diode has been investigated by using electoreflectance(ER). From the observed Franz-Keldysh oscillatins(FKO), the internal electric field(Ei) of the sample is $5.76\times 10^{4}$V/cm at 300 K. As the modulation voltage($V_{ac}$) IS changed, the line shape of ER signal does not change but its amplitude various linerly. For increasing forward and reverse dc bias boltage($V_{bias}$), the amplitude of ER signal decreases. The internal electric field decreased from $19.3\times 10^4\sim4.39\times10^4$V/cm as $V_{bias}$ INCREASES FROM -5.0 V TO 0.6 V. For Au/n-GaAs the valve of built-in voltage($V_{bi}$) determined from the plot of $V_{bias}$ versus $E_i^2$ is 0.70 V. This value agrees with that observed in the plot of $V_{bias}$ versus amplitude of FKO peak. In addition, the carrier concentraion(N) and potential barrier($\Phi$) of the sample at 300 K are found to be about $2.4\times 10^{16}\textrm{cm}^{-3}$ and 0.78 eV, respectively.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

A study of Quality evaluation for medical linear accelerator using Electronic Portal Imaging (전자포탈영상 (EPI)을 이용한 의료용 선형가속기의 성능평가에 관한 연구)

  • 윤성익;권수일;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 1998
  • Accurate radiation dosimetric characters is very important to determine of dose to a radiotherapeutic patient. Medical linear accelerators have been developed not only its new quality of convenient operation but also electric moderation. It is reliable to measure more detail physical parameter that linac's internal ability. Typically, radiation dosimetric tool is classified ionization chamber, film, thermoluminescence dosimeter, etc. Nowaday, Electronic Portal Imaging Device is smeared in radiation field to verification of treatment region. EPID's image was focused that using both on-line image verification and absolutely minimum absorbed dose during radiotherapy. So, Electronic Portal Imaging was tested for quality evaluation of medical linear accelerator had its pure conditional flash. This study has performed symmetry, Light/Radiation field congruence, and energy check, geometry difference on wedge filter using a liquid filled ion chamber (EPID). Prior to irradiated on EPID, high energy photon beam is checked with ion chamber. Using these results more convenient dosimetric method is accomplished by EPID that taken digital image. Medical image is acquired with EPID too. Therefore, EPID can be analyzed by numerical information for what want to see or get more knowledge for natural human condition.

  • PDF

Ferroelectric BiFeO3-coated TiO2 Electrodes for Enhanced Photovoltaic Properties of Dye-sensitized Solar Cells (강유전체 BiFeO3가 증착된 TiO2 전극을 이용한 염료감응형 태양전지의 효율 향상)

  • Joo, Ho-Yong;Hong, Su Bong;Lee, Hosang;Jeon, Ji Hoon;Park, Bae Ho;Hong, Sung Chul;Choi, Taekjib
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.198-203
    • /
    • 2013
  • Dye-sensitized solar cells (DSSCs) based on titanium dioxide ($TiO_2$) have been extensively studied because of their promising low-cost alternatives to conventional semiconductor based solar cells. DSSCs consist of molecular dye at the interface between a liquid electrolyte and a mesoporous wide-bandgap semiconductor oxide. Most efforts for high conversion efficiencies have focused on dye and liquid electrolytes. However, interface engineering between dye and electrode is also important to reduce recombination and improve efficiency. In this work, for interface engineering, we deposited semiconducting ferroelectric $BiFeO_3$ with bandgap of 2.8 eV on $TiO_2$ nanoparticles and nanotubes. Photovoltaic properties of DSSCs were characterized as a function of thickness of $BiFeO_3$. We showed that ferroelectric $BiFeO_3$-coated $TiO_2$ electrodes enable to increase overall efficiency of DSSCs, which was associated with efficient electron transport due to internal electric field originating from electric polarization. It was suggested that engineering the dye-$TiO_2$ interface using ferroelectric materials as inorganic modifiers can be key parameter for enhanced photovoltaic performance of the cell.