• Title/Summary/Keyword: Internal connection implant fixture

Search Result 48, Processing Time 0.022 seconds

FIT OF FIXTURE/ABUTMENT/SCREW INTERFACES OF INTERNAL CONNECTION IMPLANT SYSTEM

  • Kim, Jin-Sup;Kim, Hee-Jung;Chung, Chae-Heon;Baek, Dae-Hwa
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.338-351
    • /
    • 2005
  • Statement of problem. Accurate fit between the implant components is important because the misfit of the implant components results in frequent screw loosening, irreversible screw fracture, plaque accumulation, poor soft tissue reaction, and destruction of osseointegration. Purpose. This study is to evaluate the machining accuracy and consistency of the implant fixture/ abutment/screw interfaces of the internal connection system by using a Stereoscopic Zoom microscope and FE-SEM(field emission scanning electron microscope) Materials and methods. The implant systems selected in this study were internal connection type implants from AVANA(Osstem^{\circledR}), Bioplant(Cowell-Medi^{\circledR}), Dio(DIO^{\circledR}), Neoplant(Neobiotech 􀋓), Implantium(Dentium􀋓)systems. Each group was acquired 2 fixtures at random. Two piece type abutment and one piece type abutment for use with each implant system were acquired. Screw were respectively used to hold a two piece type abutment to a implant fixture. The implant fixtures were perpendiculary mounted in acrylic resin block. Each two piece abutment was secured to the implant fixture by screw and one piece abutment also secured to the implant fixture. Abutment/fixture assembly were mounted in liquid unsaturated polyester. All samples were cross-sectioned with grinder-polisher unit. Finally all specimens were analysed the fit between implant fixture/abutment/screw interfaces Results and conclusions. 1. Implant fixture/abutment/screw connection interfaces of internal connection systems made in Korea were in good condition. 2. The results of the above study showed that materials and mechanical properties and quality of milling differed depending on their manufacturing companies.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS WITH INTERNAL CONNECTION BETWEEN THE IMPLANT AND THE ABUTMENT (임플란트와 지대주간 내측 연결을 갖는 임플란트 보철의 유한요소 응력분석)

  • Ahn, Jong-Kwan;Kay, Kee-Sung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.356-372
    • /
    • 2004
  • Statement of problom: In the internal connection system the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. Purpose: The purpose of this study was to assess the loading distributing characteristics of 3 implant systems with internal connection under vertical and inclined loading using finite element analysis. Material and method: Three finite element models were designed according to the type of internal connection of ITI(model 1), Friadent(model 2), and Bicon(model 3) respectively. This study simulated loads of 200N in a vertical direction (A), a $15^{\circ}$ inward inclined direction (B), and a $30^{\circ}$ outward inclined direction (C). Result: The following results have been made based on this numeric simulations. 1. The greatest stress showed in the loading condition C of the inclined load with outside point from the centric cusp tip. 2. Without regard to the loading condition, the magnitudes of the stresses taken at the supporting bone, the implant fixture, and the abutment were greater in the order of model 2, model 1, and model 3. 3. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture, and lower stress was taken at the cancellous bone. 4. The stress of the implant fixture was usually widely distributed along the inner surface of the implant fixture contacting the abutment post. 5. The stress distribution pattern of the abutment showed that the great stress was usually concentrated at the neck of the abutment and the abutment post, and the stress was also distributed toward the lower part of the abutment post in case of the loading condition B, C of the inclined load. 6. In case of the loading condition B, C of the inclined load, the maximum von Misess stress at the whole was taken at the implant fixture both in the model 1 and model 2, and at the abutment in the model 3. 7. The stress was inclined to be distributed from abutment post to fixture in case of the internal connection system. Conclusion: The internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, and the abutment according to the abutment connection form had differenence among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the a butment post.

STRESS ANALYSIS OF SUPPORTING TISSUES AND IMPLANTS ACCORDING TO IMPLANT FIXTURE SHAPES AND IMPLANT-ABUTMENT CONNECTIONS (임플랜트 고정체의 형태와 연결방식에 따른 임플랜트 및 지지조직의 응력분포)

  • Han Sang-Un;Park Ha-Ok;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.226-237
    • /
    • 2004
  • Purpose: Four finite element models were constructed in the mandible having a single implant fixture connected to the first premolar-shaped superstructure, in order to evaluate how the shape of the fixture and the implant-abutment connection would influence the stress level of the supporting tissues fixtures, and prosthethic components. Material and methods : The superstructures were constructed using UCLA type abutment, ADA type III gold alloy was used to fabricate a crown and then connected to the fixture with an abutment screw. The models BRA, END , FRI, ITI were constructed from the mandible implanted with Branemark, Endopore, Frialit-2, I.T.I. systems respectively. In each model, 150 N of vertical load was placed on the central pit of an occlusal plane and 150 N of $40^{\circ}$ oblique load was placed on the buccal cusp. The displacement and stress distribution in the supporting tissues and the other components were analysed using a 2-dimensional finite element analysis . The maximum stress in each reference area was compared. Results : 1. Under $40^{\circ}$ oblique loading, the maximum stress was larger in the implant, superstructure and supporting tissue, compared to the stress pattern under vertical loading. 2. In the implant, prosthesis and supporting tissue, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 3. In the superstructure and implant/abutment interface, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 4. In the implant fixture, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 5 The stress was more evenly distributed in the bone/implant interface through the FRI of trapezoidal step design. Especially Under $40^{\circ}$ oblique loading, The maximum stress was smallest in the bone/implant interface. 6. In the implant and superstructure and supporting tissue, the maximum stress occured at the crown loading point through the ITI. Conclusion: The stress distribution of the supporting tissue was affected by shape of a fixture and implant-abutment connection. The magnitude of maximum stress was reduced with the internal connection type (FRI) and the morse taper type (ITI) in the implant, prosthesis and supporting tissue. Trapezoidal step design of FRI showed evenly distributed the stress at the bone/implant interface.

Finite Element Stress Analysis of Implant Prosthesis According to Friction Fit or Slip Fit of Internal Connection System between Implant and Abutment (임플랜트와 지대주 간 내측연결 시스템에서 Friction Fit와 Slip Fit에 따른 유한요소 응력분석)

  • Jang, Doo-Ik;Jeong, Seung-Mi;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.113-132
    • /
    • 2005
  • The purpose of this study was to assess the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to a friction-fit joint (Astra; Model 1) or slip- fit joint (Frialit-2; Model 2) in the internal connection system under vertical and inclined loading using finite element analysis. In conclusion, in the internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to the abutment connection form had difference among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the abutment post. The magnitude of the stress distributed in the supporting bone, the implant fixture, the abutment and the abutment screw was higher in the friction-fit joint than in the slip-fit joint. But it is considered that the further study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

Machining Tolerance of Various Implant Systems and their Components (치과용 임플란트 시스템의 기계적 가공오차에 관한 연구)

  • Kim, Hyeong-Seob;Kwon, Kung-Rock;Han, Jung-Suk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Misfit of implant components was very important in terms of prosthodontics. they has been linked to prosthetic complications such as screw loosening and fracture. Although there are many results about rotational freedom or machining tolerance between fixture and abutments, the data about domestic implant systems are lacking. The aim of this in vitro study was to evaluate the rotational freedom of domestic external and internal connection implant systems between their fixtures/anlaogs and abutments comparing imported systems. Materials and Methods: Rotational freedom between abutments and fixtures/analogs was investigated by using digitalized rotational angle measuring device. (1) 1 domestic external connection system(Neobiotec) and 2 imported external connection systems(Nobel Biocare, Anthorgyr), (2) 1 domestic internal connection system(Dentium) and 4 imported external connection systems(Nobel Biocare, Anthorgyr, Straumann, Frident Dentsply), and (3) 1 domestic zirconia external connection abutment(ZirAce) were evaluated. Each group has 3 samples. Mean values for each group were analyzed. Results: The differences relative to rotational freedom between domestic and imported implant systems were observed but domestic external connection implant system showed about 2.67 degrees(in case of fixture) and internal connection system showed about 4.3 degrees(in case of fixture). Domestic zirconia abutment showed less than 3 degrees of rotational freedom in a situation where the abutment was connected to an implant fixture egardless of domestic or imported systems. Conclusion: Newly developed digitalized rotational angle measuring device has high measuring resolution. The rotational freedom of domestic implant systems were similar to imported implant systems.

Fit of Fixture/Abutment/Screw Interface of Internal Connection Implant Systems (수종의 내측연결 임플랜트 시스템에서 고정체-지대주-나사계면의 적합에 관한 연구)

  • Shim, Deok-Bo;Kim, Hee-Jung;Oh, Sang-Ho;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.283-298
    • /
    • 2008
  • The purpose of this study was to evaluate mechanical fit of fixture- abutment-screw interface in the internal connection implant systems. In this study, each two randomly selected internal implant fixture- abutment assemblys from Certain, Xive, Replace, Ankylos, SS II. were used. The implants were perpendicularly mounted in liquid unsaturated polyester by use of dental surveyor. Each abutment was connected to the implant with recommended torque value using a torque controller. All samples were cross-sectioned with grinder-polisher unit after embeded in liquid unsaturated polyester, and then fixture-abutment-screw interfaces of all samples by using optical microscope and scanning electron microscope were analyzed. Conclusively, although a little variation in machining accuracy and consistency was noted in the samples, important features of all internal connection systems were the deep, internal fixture-abutment connections which provides intimate contact with the implant walls to resist micromovement, resulting in a strong stable interface.

FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO CONNECTION TYPES OF IMPLANT-ABUTMENT (임플랜트-지대주의 연결방법에 따른 임플랜트 보철의 유한요소 응력분석)

  • Hur Jin-Kyung;Kay Kee-Sung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.544-561
    • /
    • 2005
  • Purpose : This study was to assess the loading distributing characteristics of implant systems with internal connection or external connection under vertical and inclined loading using finite element analysis. Materials and methods : Two finite element models were designed according to type of internal connection or external connection The crown for mandibular first molar was made using cemented abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the centric cusp tip in a 15$^{\circ}$ inward inclined direction (loading condition B), or 200N at the centric cusp tip in a 30$^{\circ}$ outward inclined direction (loading condition C) respectively. Von Mises stresses were recorded and compared in the supporting bone, fixture, abutment and abutment screw. Results : 1. In comparison with the whole stress or the model 1 and model 2, the stress pattern was shown through th contact of the abutment and the implant fixture in the model 1, while the stress pattern was shown through the abutment screw mainly in the model 2. 2. Without regard to the loading condition, greater stress was taken at the cortical bone, and lower stress was taken at the cancellous bone. The stress taken at the cortical bone was greater at the model 1 than at the model 2, but the stress taken at the cortical bone was much less than the stress taken at the abutment, the implant fixture, and the abutment screw in case of both model 1 and model 2. 3. Without regard to the loading condition, the stress pattern of the abutment was greater at the model 1 than at the model 2. 4. In comparison with the stress distribution of model 1 and model 2, the maximum stress was taken at the abutment in the model 1. while the maximum stress was taken at the abutment screw in the model 2. 5. The magnitude of the maximum stress taken at the supporting bone, the implant fixture, the abutment, and the abutment screw was greater in the order of loading condition A, B and C. Conclusion : The stress distribution pattern of the internal connection system was mostly distributed widely to the lower part along the inner surface of the implant fixture contacting the abutment core through its contact portion because of the intimate contact of the abutment and the implant fixture and so the less stress was taken at the abutment screw, while the abutment screw can be the weakest portion clinically because the greater stress was taken at the abutment screw in case of the external connection system, and therefore the further clinical study about this problem is needed.

External vs internal connection implant system (External vs internal implant : 각각의 장점과 고려사항)

  • Seong, Dong-Jae;Hong, Seoung-Jin;Ha, Seung-Ryong
    • The Journal of the Korean dental association
    • /
    • v.54 no.3
    • /
    • pp.184-190
    • /
    • 2016
  • The osseointegration of titanium implants has been examined over the past 50 years. Many implant systems have been introduced and have become popular to the implant dentistry. The designs of the connection between implant fixture and abutment are divided into external vs internal connection. From beginning, the $Br{\aa}nemark$ system was characterized by an external hexagon. Internal connection has been developed to reduce stress transferred to the bone. These differences may have impact on the clinical procedures and protocols, laboratory and components costs, and incidence of complications. Therefore, the clinician has to know the different biomechanical features and understand their implications to produce successful implant-supported prosthesis with an external or an internal connection system.

  • PDF

A STUDY ON THE VARIOUS IMPLANT SYSTEMS USING THE FINITE ELEMENT STRESS ANALYSIS (수종의 임플랜트 시스템에 따른 유한요소법적 응력분석에 관한 연구)

  • Yu Seong-Hyun;Park Won-Hee;Park Ju-Jin;Lee Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.207-216
    • /
    • 2006
  • Statement of Problem: To conduct a successful function of implant prosthesis in oral cavity for a long time, it is important that not only structure materials must have the biocompatibility, but also the prosthesis must be designed for the stress, which is occurred in occlusion, to scatter adequately within the limitation of alveolar bone around implant and bio-capacity of load support. Now implant which is used in clinical part has a very various shapes, recently the fixture that has tapered form of internal connection is often selected. However the stress analysis of fixtures still requires more studies. Purpose: The purpose of this study is to stress analysis of the implant prosthesis according to the different implant systems using finite element method. Material and methods: This study we make the finite element models that three type implant fixture ; $Br{\aa}nemark$, Camlog, Frialit-2 were placed in the area of mandibular first premolar and prosthesis fabricated, which we compared with stress distribution using the finite element analysis under two loading condition. Conclusion: The conclusions were as follows: 1. In all implant system, oblique loading of maximum Von mises stress of implant, alveolar bone and crown is higher than vertical loading of those. 2. Regardless of loading conditions and the type of system. cortical bone which contacts with implant fixture top area has high stress, and cancellous bone has a little stress. 3. Under the vertical loading, maximum Von mises stress of $Br{\aa}nemark$ system with external connection type and tapered form is lower than Camlog and Frialit-2 system with internal connection type and tapered form, but under oblique loading Camlog and Frialit-2 system is lower than $Br{\aa}nemark$ system.

EVALUATION OF THE ACCURACY OF FIXTURE-LEVEL IMPRESSION TECHNIQUE FOR INTERNAL CONNECTION IMPLANT USING CLINICAL METHODS (임상적 방법을 이용한 내부연결 임플랜트에서 고정체수준 인상법의 정확도 평가)

  • Choi Jung-Han
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.421-431
    • /
    • 2006
  • Statement of problem : Accurate impression is essential to success of implant prostheses. But there have been few studies about the accuracy of fixture-level impression technique in internal connection implant system. Purpose: This study evaluated the accuracy of splinted fixture-level impression technique using clinical methods and the effect of internal hex on fit of superstructure in internal connection implant system (Astra Tech). Material and method : Two metal master frameworks made from two abutments (Cast-to Abutment ST) each for parallel and divergent conditions and a corresponding. passively fitting, dental stone master cast with four future replicas (Fixture Replica ST) were fabricated. Ten dental stone casts were made with vinyl polysiloxane impressions from the master cast by acrylic resin splinted fixture-level impression technique. To evaluate the accuracy of impression technique, the fit of master frameworks for test models was evaluated using screw resistance test (SRT) and one-screw test. The results of SRT were recorded as SRT values from grade 1 to grade 5 by 1/4 turn. And to evaluate the effect of hex on fit of superstructure, the same tests were performed after removing hexes of master frameworks. Results: 1. There was only one case (2.5%) showing SRT value of test model below ade 2 in total before and after removing hexes of master frameworks. And, by removing hexes. SRT values decreased in only one test model (5%) and did not change in 17 test models (85%). 2. SRT values of the 1$^{st}$ screws were grade 2 in 80% of cases before, and grade 1 in 80% of cases after removing hexes. And, by removing hexes, SRT values decreased in 72.5% of cases. 3. SRT values of the 2$^{nd}$ screws were grade 3 in 85% of cases before, and grade 3 in 95% of cases after removing hexes. And, by removing hexes, SRT values did not change in 85% of cases. 4. There were only 2 cases regarded as acceptable fit by one-screw test, and SRT values of 2$^{nd}$ screws of both cases were grade 2. Conclusion. Within the limitations of this study, future-level impression of internal connection implant system is considered to obtain inaccurate working cast, even using acrylic resin splinted impression technique. And, it is considered to be unable improve the fit to remove the hexes of implant restoration.