• 제목/요약/키워드: Internal Power

검색결과 2,221건 처리시간 0.031초

A Study of Power Output Characteristics for the Magnesium Metal Fuel Cell (마그네슘 금속연료전지의 출력특성에 관한 연구)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제63권3호
    • /
    • pp.212-217
    • /
    • 2014
  • The electric power output characteristics of magnesium fuel cell were investigated with regard to internal resistance. A equivalent circuit with the series-connected three internal resistance was introduced to analyze of the response to change of power. The power output analysis was employed in order to investigate the effect of internal resistances for the electrolyte concentration, air electrode area, Mg electrode area and distance between the electrodes. It was confirmed that internal resistance is generated by the electrolyte, air electrode and metal electrode, then those Internal resistances had a significant effect on the power output decrease. The power output was a maximum when the load resistance maches the internal resistance of the magnesium fuel cell. The fuel efficiency was only 50% at maximum power output. Higher fuel efficiency was achieved when the load resistance is greater than the internal resistance.

Transition of voltage-differential current under internal fault on power transformer (전력용 변압기 내부고장시 전압-차전류의 변화에 관한 연구)

  • Park, Jae-Sae
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2004년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.92-95
    • /
    • 2004
  • Power transformer is an important apparatus in transforming and delivering the power in a power system. It shows less accident ratio than other system apparatus, but once the accident occurs, it causes long-term operation stoppage and economic loss. It brings high bad spillover effects. Therefore, the role of protective relaying, which is to prevent internal fault a power transformer is highly important. This study proposed advanced algorithm that can clearly determine internal fault of the power transformer and magnetizing inrush, through numerical analysis by using the terminal voltage and input output current.

  • PDF

Leak Evaluation for Power Plant Valve Using Multi-Measuring Method

  • Lee, Sang-Guk;Park, Jong-Hyuck;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제28권6호
    • /
    • pp.469-476
    • /
    • 2008
  • Condition based maintenance(CBM) for the preventive diagnosis of important equipments related to safety or accident in power plant is essential by using the suitable methods based on actual power plant conditions. To improve the reliability and accuracy of the measured value at the minute leak situation, and also to monitor continuously internal leak condition of power plant valve, the development of a diagnosis and monitoring technique using multi-measuring method should be performed urgently. This study was conducted to estimate the feasibility of multi-measuring method using three different methods such as acoustic emission(AE) method, thermal image measurement and temperature difference$({\Delta}T)$ measurement that are applicable to internal leak diagnosis for the power plant valve. From the experimental results, it was suggested that the multi-measuring method could be an effective way to precisely diagnose and evaluate internal leak situation of valve.

Study on Evaluation of Internal Leak of Turbine Control Valve in Power Plant Using Acoustic Emission Signal Measurement (음향방출 계측에 의한 터빈 제어밸브 내부누설 평가연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • 제12권5호
    • /
    • pp.65-70
    • /
    • 2008
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the turbine major valves relating to safety for turbine operating and prevention of turbine trouble at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized electro-hydraulic control oil flowed through turbine electro-hydraulic controller oil check valve and turbine power/trip fluid solenoid valve in the condition of actual turbine operating. The acoustic emission method was applied to the valves at the site, and the background noise was measured far the abnormal plant condition. To judge for the leak existence ell the object valves, voltage analysis and frequency analysis of acoustic signal emitted from infernal leak in the valve operating condition are performed. It was conformed that acoustic emission method could monitor for valve internal leak to high sensitivity.

  • PDF

Protective Relaying Algorithm for Transformer Using Wavelet Transform (웨이블렛 변환을 이용한 변압기 보호계전 알고리즘)

  • 홍동석;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제52권2호
    • /
    • pp.134-141
    • /
    • 2003
  • The power transformer is one of the very important electric facilities in power systems. Recently, current differential relay is widely used to protect such power transformer But if inrush occurs in transformer, relay can be tripped by judging like internal fault. Therefore the correct discrimination between internal winding fault, inrush and overexcitation should be performed. This paper presents a new protective relaying algorithm which discriminates inrush, internal faults and overexcitation of transformer modelled using BCTRAN and HYSDAT of EMTP. Discrimination between internal winding fault and inrush is revealed in simulation within 1/2 cycle after fault. Accordingly, it is evaluated that the proposed algorithm has better discrimination characteristics in various cases thin the current relaying for protection of transformer.

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.

Internal Flow Condition of High Power Contra-Rotating Small-Sized Axial Fan

  • Shigemitsu, Toru;Fukutomi, Junichiro;Agawa, Takuya
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권1호
    • /
    • pp.25-32
    • /
    • 2013
  • Data centers have been built with spread of cloud computing. Further, electric power consumption of it is growing rapidly. High power cooling small-sized fans; high pressure and large flow rate small-sized fan, are used for servers in the data centers and there is a strong demand to increase power of it because of increase of quantity of heat from the servers. Contra-rotating rotors have been adopted for some of high power cooling fans to meet the demand for high power. There is a limitation of space for servers and geometrical restriction for cooling fans because spokes to support fan motors, electrical power cables and so on should be installed in the cooling fans. It is important to clarify complicated internal flow condition and influence of a geometric shape of the cooling fans on performance to achieve high performance of the cooling fans. In the present paper, the performance and the flow condition of the high power contra-rotating small-sized axial fan with a 40mm square casing are shown by experimental and numerical results. Furthermore, influence of the geometrical shape of the small-sized cooling fan on the internal flow condition is clarified and design guideline to improve the performance is discussed.

A study on characteristics and internal exposure evaluation of radioactive aerosols during pipe cutting in decommissioning of nuclear power plant

  • Kim, Sun Il;Lee, Hak Yun;Song, Jong Soon
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1088-1098
    • /
    • 2018
  • Kori unit #1, which is the first commercial nuclear power plant in Korea, was permanently shutdown in June 2017, and it is about to be decommissioned. Currently in Korea, researches on the decommissioning technology are actively conducted, but there are few researches on workers internal exposure to radioactive aerosol that is generated in the process of decommissioning nuclear power plants. As a result, the over-exposure of decommissioning workers is feared, and the optimal working time needs to be revised in consideration of radioactive aerosol. This study investigated the annual exposure limits of various countries, which can be used as an indicator in evaluating workers' internal exposure to radioactive aerosol during pipe cutting in the process of decommissioning nuclear power plants, and the growth and dynamics of aerosol. Also, to evaluate it, the authors compared/analyzed the cases of aerosol generated when activated pipes are cut in the process of nuclear power plants and the codes for evaluating internal exposure. The evaluation codes and analyzed data conform to ALARA, and they are believed to be used as an important indicator in deriving an optimal working time that does not excess the annual exposure limit.

Effect of KOH Electrolyte and H2O2 Depolarizer on the Power Characteristics of Al/Air Fuel Cells (Al/Air 연료전지의 출력특성에 미치는 KOH 전해질과 H2O2 감극제의 영향)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제64권4호
    • /
    • pp.303-307
    • /
    • 2015
  • The effects of additive such as $H_2O_2$ in KOH electrolyte solution for the Aluminum/Air fuel cell were investigated with regard to electric power characteristics. The power generated by a Al/Air fuel cell was controlled by the KOH electrolyte solution and $H_2O_2$ depolarizer. Higher cell power was achieved when higher KOH electrolyte concentration and higher $H_2O_2$ depolarizer amount. The maximum power was increased by the increase amount $H_2O_2$ depolarizer, it was found that $H_2O_2$ depolarizer inhibits the generation of hydrogen and the polarization effect was reduced as a result. Internal resistance analysis was employed to elucidate the maximum power variation. Higher internal resistance created internal potential differences that drive current dissipating energy. In order to improve the output characteristics of the Al/Air fuel cell, it is thought to be desirable to increase the KOH electrolyte concentration and increase the $H_2O_2$ addition amounts.

STEADY-STATE OPTIMIZATION OF AN INTERNAL COMBUSTION ENGINE FOR HYBRID ELECTRIC VEHICLES

  • Wang, F.;Zhang, T.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.361-373
    • /
    • 2007
  • In previous work, an approach based on maximizing the efficiency of an internal combustion engine while ignoring the power conversion efficiency of other powertrain components, such as the electric motor and power battery or ultracapacitor, was implemented in the steady-state optimization of an internal combustion engine for hybrid electric vehicles. In this paper, a novel control algorithm was developed and successfully justified as the basis for maximal power conversion efficiency of overall powertrain components. Results indicated that fuel economy improvement by 3.9% compared with the conventional control algorithm under China urban transient-state driving-cycle conditions. In addition, using the view of the novel control algorithm, maximal power generation of the electric motor can be chosen.