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Abstract 

Data centers have been built with spread of cloud computing. Further, electric power consumption of it is growing 
rapidly. High power cooling small-sized fans; high pressure and large flow rate small-sized fan, are used for servers in 
the data centers and there is a strong demand to increase power of it because of increase of quantity of heat from the 
servers. Contra-rotating rotors have been adopted for some of high power cooling fans to meet the demand for high 
power. There is a limitation of space for servers and geometrical restriction for cooling fans because spokes to support 
fan motors, electrical power cables and so on should be installed in the cooling fans. It is important to clarify 
complicated internal flow condition and influence of a geometric shape of the cooling fans on performance to achieve 
high performance of the cooling fans. In the present paper, the performance and the flow condition of the high power 
contra-rotating small-sized axial fan with a 40mm square casing are shown by experimental and numerical results. 
Furthermore, influence of the geometrical shape of the small-sized cooling fan on the internal flow condition is clarified 
and design guideline to improve the performance is discussed. 
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1. Introduction 

Data centers have been built because of spread of cloud computing, establishment of ubiquitous networking society and increase in 
rate of electric parts in machines. Then, electric power consumption in the data centers, IT devices and machines have been increasing 
significantly[1]. Electric power used for cooling of the IT devices for the data centers is huge the same as that used for the IT devices 
itself in the data centers and the electric power consumption of it is growing rapidly. There is a strong demand for a reduction of electric 
power consumption in above facilities and equipments from the point of view of the global warming and the energy savings[2]. High 
power cooling small-sized fans; high pressure and large flow rate small-sized fan, are used for servers in the data centers and there is a 
strong demand to increase power of it because of increase of quantity of heat from the servers, however, increase of the power by an 
increase of a fan diameter is restricted because of limitation of space. Therefore, high rotational speed design is conducted, and the 
rotational speed over 10,000min-1 is employed for the cooling fans of servers. Contra-rotating rotors have been adopted for some of the 
high power cooling fans to meet the demand for high power. On the other hand, low rotational speed design[3] and advantages on the 
performance of the contra-rotating fans and pumps were verified by experimental results[4],[5]. In the case of contra-rotating rotors, an 
axial space becomes larger than conventional small-sized axial fans, but it is adequate choice to apply the contra-rotating rotors for 
small sized-fans because the axial space can be ensured in electrical devices as compared to that of a radial space. Influence of the axial 
space of the contra-rotating axial flow fan was investigated in a middle size fan[6] and a small-sized fan[7]. In the case of the contra-
rotating rotors, it is necessary to design the rotor considering unsteady flow condition[8]. Further, it is important to clarify influence of 
wakes from a front rotor to a rear rotor on performance and pressure interaction between the front and the rear rotors[9]. Further, the 
conventional design method and the theory for turbo machinery should be modified for small-sized axial fans because small-sized axial 
fans applied to electrical devices belong to extremely small size field in turbo machinery[10]. In addition to that, there is a limitation of 
space for servers and geometrical restriction for cooling fans because spokes to support the fan motor, electrical power cables and so on 
should be installed in the cooling fans. Therefore, it is important to clarify complicated internal flow condition and influence of the 
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Nomenclature 

c 
Dh 
Dt 

m 
N 
Nd 

Pd 
Ps 
Pt 
Q 

Tip clearance [mm] 
Diameter of hub [mm] 
Diameter of tip [mm] 
Local mass flow[kg/s] 
Rotational speed [min-1] 
Design rotational speed [min-1] 
Dynamic pressure [Pa] 
Fan static pressure[Pa] 
Total pressure [Pa] 
Flow rate [m3/min] 

Qo 
r 
rc 
z 

 
Subscripts
f 
r 
d 

Operating flow rate [m3/min] 
Radius [mm] 
Radius of casing [mm] 
Axial position from front rotor inlet[mm] 
Variable 
Rotational angle [°] 
 
Front rotor 
Rear rotor 
Design point 
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