• Title/Summary/Keyword: Internal Pipe

Search Result 464, Processing Time 0.042 seconds

Theraml Analysis of the Heat of Hydration in Concrete with Considering Heat Reduction Techniques (온도저감 공법을 고려한 콘크리트의 수화열 해석기법에 관한 연구)

  • 김진근;김국한;양주경
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.176-185
    • /
    • 1995
  • The heat generation of hydration of cement causes the internal temperature rise and volum& change at early age, particularly in massive concrete structures. As the results of the temperature rise and external restraint conditions, the thermal stress may induce cracks in concrete. Therefore, various techniques of the thermal stress control of the mass concrete have been wid'dy used. One of them is pipecooling which reduces the temperature of concrete with flowing water. The objective of this paper' is to develop a finite element program which is capable of simulating the temperature history considering pipe-cooling effect. The numerical results in this study are in good agreement with experimental data measured in the footing(l1 x22m). Therefore, this study may provide available method to predict the hydration temperature of concrete with pip:-cooling.

Development of Thin-Film Thermo-Electrochemical Cell for Harvesting Waste Thermal Energy (폐열 에너지 수집을 위한 박막형 열-전기화학전지 개발)

  • Im, Hyeongwook;Kang, Tae June;Kim, Dae Weon;Kim, Yong Hyup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.1010-1015
    • /
    • 2012
  • In this study, a thin-film thermo-electrochemical cell that directly converts waste thermal energy into electrical energy was fabricated. Electrical conductivity of conducting carbon fiber, which was used as flexible electrode, was increased through coating of carbon nanotube, and resistance of the CNT-coated fiber electrode was not changed even after bending test with various curvatures. Maximum output power of the thermocell was increased quadratically with the temperature difference, and showed a value of about 2.5 mW/kg at temperature difference of $3.4^{\circ}C$. As a result of discharge test for 12 hours, it is confirmed that the cell can operates continuously. And thin-film thermocell wrapped around a pipe with hot liquid flowing within was demonstrated. Internal resistance of the cell was decreased with various curvature of heat pipe, and maximum output power was increased by 30 %. Therefore, the cell can be applied to various heat source.

Effect of RuCl3 Concentration on the Lifespan of Insoluble Anode for Cathodic Protection on PCCP

  • Cho, H.W.;Chang, H.Y.;Lim, B.T.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • Prestressed Concrete steel Cylinder Pipe (PCCP) is extensively used as seawater pipes for cooling in nuclear power plants. The internal surface of PCCP is exposed to seawater, while the external surface is in direct contact with underground soil. Therefore, materials and strategies that would reduce the corrosion of its cylindrical steel body and external steel wiring need to be employed. To prevent against the failure of PCCP, operators provided a cathodic protection to the pre-stressing wires. The efficiency of cathodic protection is governed by the anodic performance of the system. A mixed metal oxide (MMO) electrode was developed to meet criteria of low over potential and high corrosion resistance. Increasing coating cycles improved the performance of the anode, but cycling should be minimized due to high materials cost. In this work, the effects of $RuCl_3$ concentration on the electrochemical properties and lifespan of MMO anode were evaluated. With increasing concentration of $RuCl_3$, the oxygen evolution potential lowered and polarization resistance were also reduced but demonstrated an increase in passive current density and oxygen evolution current density. To improve the electrochemical properties of the MMO anode, $RuCl_3$ concentration was increased. As a result, the number of required coating cycles were reduced substantially and the MMO anode achieved an excellent lifespan of over 80 years. Thus, we concluded that the relationship between $RuCl_3$ concentration and coating cycles can be summarized as follows: No. of coating cycle = 0.48*[$RuCl_3$ concentration, $M]^{-0.97}$.

Characteristics of Heat Transfer of Natural Convection for Magnetic Fluids in Annular Pipes (이중원관내 자성유체의 자연대류에 대한 전열특성)

  • Park, J.W.;Jun, C.H.;Seo, L.S.;Ryu, S.O.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • Compared with Newtonial fluids, magnetic fluids have effects on magnetic force. In this study, the purpose is to research the heat transfer characteristic of magnetic fluids which have metalic and fluid characteristics as the external pipe is being cooled and internal pipe is heated. This study found the experimental results from the study of the variety of natural convection for magnetic fluids and the characteristics of the heat transfer by using numerical analysis according to the strength and direction of the magnetic fields from being imposed from the outside. Natural convection of magnetic fluids was controlled by the impressed magnetic fields, and the result of mean nusselt number was calculated. If the impressed magnetic field is in the direction of gravity or the strength of impressed magnetic field is more than -14 mT in the opposite direction, the heat transfer is more than that without the impressed magnetic field. If the strength of impressed magnetic field is less than -14 mT in the opposite direction, it is smaller than that without the impressed magnetic field. Especially, when the strength of the magnetic field is -14 mT, the heat transfer was at the minimum.

Integrated Fitness-for-service Program for Natural Gas Transmission Pipeline (천연가스 공급배관의 사용적합성 통합프로그램)

  • Kim, Woo-Sik;Kim, Young-Pyo;Kim, Cheol-Man;Baek, Jong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.269-274
    • /
    • 2008
  • For fitness-for-service analyses of underground natural gas pipelines, engineering assessment methods against possible defects need to be developed. The assessment methods for high pressure pipeline of KOGAS, was developed using the full size pipe burst tests and the finite element analysis. It included the defect assessment methods for a single and multi-corrosion, corrosion in girth welding part, corrosion in seam welding part, the mechanical damage defects as dent and gouge, crack and large plastic deformation of API 5L X65 pipe. In addition, we developed method to assess pipeline integrity by internal and external load to buried pipeline. Evaluation results were compared with other methods currently being applied to the gas pipeline. The program of Windows environment is made for easily using assessment methods. It provides a consistent user interface, so non-professional technician can easily and friendly use the FFS program from company intranet. Several evaluation programs is easily installed using one installer. Each program constitutes a common input interface and the output configuration program, and evaluation result store and can be recalled at any time. The FFS program based on independent evaluation method is used to evaluate the integrity and safety of KOGAS pipeline, and greatly contribute to safe and efficient operation of pipeline. This paper presents experimental, analytical and numerical investigations to develop the FFS methods for KOGAS pipeline, used as high pressure natural gas transmission pipeline within KOREA. Also, it includes the description of the integrated program for FFS methods.

  • PDF

Numerical Study on Flow and Heat Transfer Characteristics of Pipes with Various Shapes (파이프 형상에 따른 내부 열유동 특성과 성능에 관한 수치해석적 연구)

  • Park, Sang Hyeop;Kim, Sang Keun;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.999-1007
    • /
    • 2013
  • The present work reports numerical results of the pressure drop and heat transfer characteristics of pipes with various shapes such as circular, elliptical, circumferential wavy and twisted using a three-dimensional simulation. Numerical simulations are calculated for laminar to turbulent flows. The fully developed flow in pipes was modeled using steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations. The friction and Colburn factor of each pipe are compared with those of a circular tube. The overall flow and heat transfer calculations are evaluated by the volume and area goodness factor. Finally, the objective of the investigation is to find a pipe shape that decreases the pressure loss and increases the heat transfer coefficient.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.

A Study for Comparison of Consequence Analysis for Buried Pipeline Considering the Depth Factor (깊이 인자를 고려한 매설배관의 사고피해영향 비교 분석에 관한 연구)

  • Han, Seung-Hoon;Seol, Ji-Woo;Yoo, Byong-Tae;Tae, Chan-Ho;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.9-16
    • /
    • 2016
  • Buried pipe system is subject to leak or rupture due to internal and external defects with age. Especially, if the pipeline is designed for pressurized gas, the leak can wreak a devastating on its surrounding area. The current method of setting up underground gas pipeline is based on OGP criteria of applying one tenth of the inner pipe pressure. The criteria is applied irrespective of their burial depth or pipe's properties. At times, even the whole safety measures are totally ignored. Considering the magnitude of possible damage from a gas leakage, a precise analytical tool for the risk assessment is urgently needed. The study was conducted to assess possible scenarios of gas accidents and to develop a computer model to minimize the damage. The data from ETA was analyzed intensively, and the model was developed. The model is capable of predicting jet fire influence area with comprehensive input parameters, such as burial depth. The model was calibrated and verified by the historic accident data from Edison Township, New Jersey, the United States. The statistical model was also developed to compare the results of the model in this study and the existing OGP model. They were in good agreement with respect to damage predictions, such as radiation heat coming from 10 meters away from the heat source of gas flame.

Proposal of A Method to Enhance Pumping Efficiency of Cementitious Materials by Injecting Activation Agent to Slip-Layer and its Lab-Scale Experimental Verification (시멘트계 재료의 펌프압송성능 향상을 위한 윤활층 활성화제 주입 방법 제안 및 소규모 실험검증)

  • Lee, Jung-Soo;Yoo, Yong-Sun;Han, Jin-Gyu;Park, Chan-Kyu;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.442-449
    • /
    • 2017
  • In this study, a method to inject small amount of activation agent from the outside of the pipeline to the inside wall of the pipe was newly proposed to enhance pumping efficiency of cementitious materials. The activation agent is injected into the slip-layer, which is generally formed in the vicinity of the inside wall of the pipe during pumping cementitous materials. Through the injections, it is expected to decrease viscosity of slip-layer, namely, the friction between the mateirals and the pipe. The proposed method was verified by lab-scale pumping tests with mortars having water to cement ratio of 47%. The tests were performed with two different type of activation agents(superplasticizer and anionic surfactant) and three different amount of the agents(0.14, 0.28, 0.42% of the mortar volume). The compressive strength were measured with and without injecting the activation agent, and the internal pressures of pipeline were measured. When the anionic surfactant was used, there was no change in the compressive strength. As the amount of anionic surfactant increased, the pumping pressure decreased up to 71.4% at the maximum.

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.