• Title/Summary/Keyword: Internal Pipe

Search Result 464, Processing Time 0.028 seconds

A Study of a New Precision Finishing Process for Inside Surface of Silicon Nitride Fine Ceramic Pipe by Application of Magnetic Abrasive Machining (자기 연마법에 의한 질화 규소계 세라믹 파이프 내면의 경면 연마 특성에 관한 연구)

  • Park, Won-Gyu;Shinmura, Takeo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.47-53
    • /
    • 2001
  • Results ar presented of a new process for internal precision finishing of slender fine ceramic pipes using a magnetic field generated by a permanent magnets. For finishing the interior surface of a long pipe, a new type of finishing equipment was developed which can be very easily used in an industrial surrounding. In general, the pipe is so slender that a conventional finishing tool is hardly inserted into the pipe deeply, being impossible to finish. Therefore, a new technology has been considered to finish inside of a slender ceramic pipe by a simple technique. In this experimental, Magnetic Abrasive Machining is applied for the inner surface of silicon nitride fine ceramic pipe using ferromagnetic particles mixed with chromium-oxide powder. It is shown the initial roughness of 2.6㎛ Ry(0.42㎛ Ra) in the inside surface can be precisely finished to the roughness of 0.1㎛ Ry(0.01㎛ Ra). This paper discusses the outline of the processing by the application of magnetic abrasive machining and a few finishing characteristics.

Effect of Dissolved Oxygen (DO) on Internal Corrosion of Water Pipes

  • Jung, Hae-Ryong;Kim, Un-Ji;Seo, Gyu-Tae;Lee, Hyun-Dong;Lee, Chun-Sik
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.195-199
    • /
    • 2009
  • A series of laboratory-scale corrosion experiments was carried out to observe the effect of dissolved oxygen (DO) in the presence of other water quality parameters, such as hardness, Cl-, and pH using various pipe materials. In addition, a simulated loop system was installed at a water treatment plant for pilot-scale experiment. Laboratory-scale experiment showed that corrosion rates for galvanized steel pipe (GSP), carbon steel pipe (CSP), and ductile cast iron pipe (DCIP) were decreased to 72%, 75%, and 91% by reducing DO concentration from 9${\pm}$0.5 mg/L to 2${\pm}$0.5 mg/L. From the pilot scale experiment, it was further identified that the average ionization rate of zinc in GSP decreased from 0.00533 to 0.00078 mg/$cm^2$/d by controlling the concentration of DO. The reduction of average ionization rate for copper pipe (CP) and stainless steel pipe (SSP) were 71.4% for Cu and 63.5% for Fe, respectively. From this study, it was concluded that DO could be used as a major parameter in controlling the corrosion of water pipes.

The Proportional Hazards Modeling for Consecutive Pipe Failures Based on an Individual Pipe Identification Method using the Characteristics of Water Distribution Pipes (상수도 배수관로의 특성에 따른 개별관로 정의 방법을 이용한 파손사건 사이의 비례위험모델링)

  • Park, Suwan;Kim, Jung Wook;Jun, Hwan Don
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.

Liquidity Evaluation on the Horizontal Branch Pipe Connected to a Food Waste Disposer (디스포저에 의한 음식물류폐기물 횡지관 유동성 평가)

  • Jang, Choon-Man;Lee, Sang-Moon;Kim, Chul-Kyu;Park, Se-Joon;Yu, Jong-Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • This paper describes liquidity evaluation on the horizontal branch pipe connected to a food waste disposer and performance of five disposers marketed. Experimental apparatus for analyzing the five disposers has been introduced to measure vibration, sound level and power consumption of the disposers. Simulator for analyzing the required water velocity to avoid waste jam inside the pipe connected to a food waste disposer has been designed and constructed. The simulator can control some experimental parameters: pipe slope, disposer supply water quantity, food waste materials and operation time of a disposer. Throughout the experimental measurements of the disposers marketed, it is found that the time need to crash food waste is about 20 seconds on the average. At the same flow condition, increase rate of internal water velocity is accelerated as the pipe slope increases. The water velocity inside the pipe having 50 A and slope of 1/50 is 0.26 m/s when the water flowrate to supply the disposer is 16 l pm. Considering the specific gravity and adhesion property of food waste, water velocity of the horizontal branch pipe connected to a food waste disposer need to excess 0.26 m/s at least to avoid the waste blockage inside the pipe.

Effect of Wall Thinned Shape and Pressure on Failure of Wall Thinned Nuclear Piping Under Combined Pressure and Bending Moment (감육형상 및 내압이 원자력 감육배관의 파단에 미치는 영향 -내압과 굽힘모멘트가 동시에 작용하는 경우-)

  • Shim, Do-Jun;Lim, Hwan;Choi, Jae-Boong;Kim, Young-Jin;Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.742-749
    • /
    • 2003
  • Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G and ASME Code Case N597 are still useful fer assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most Pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element(FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on true ultimate stress(${\alpha}$$\sub$u,t/) were obtained from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.

Investigation and Assessment of the Deterioration on Aging Large Water Mains (대형 상수관로 노후상태 조사 및 평가에 관한 연구)

  • Kim, Ju-Hwan;Bae, Chul-Ho;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.545-558
    • /
    • 2006
  • The current conditions of large water mains are evaluated by deteriorations and the causes of deterioration are investigated through visual assessments in the field, mechanical tests and analysis of chemical compositions in laboratory for each pipe material, unlined cast iron pipes (CIPs), ductile iron pipes (DCIPs) and steel pipes (SPs) Tubercles and scales from internal and external corrosion of unlined cast iron pipes were identified as the causes of functional performance limitations in large water mains. It is investigated that main causes of internal and external corrosion of water pipes are from lots of depositions of organic and inorganic substances on pipe surface, concentrated pitting, and uniform corrosion by local or global exfoliation or detachment of lining and coatings of DCIPs and SPs. Internal and external corrosion depths of CIPs were higher than those of DCIPs and SPs. Consequently, total corrosion rate summed internal and external corrosion rates of CIPs also were shown to be higher than those of DCIPs and SPs. The failure time from hole generation of CIPs by total corrosion rate was predicted to be taken sixteen years, and DCIPs and SPs were twenty-six years and one hundred and fifty three years. And longitudinal deflection of investigated water mains were not happened and mechanical strengths such as tensile strength, elongation, and hardness also were mostly suited to Korea Standards. It was thought that the weakness of tensile strength of one sample(S-11) was, however, due to higher carbon contents(%) in CIPs. Pipe deterioration score of S-46 was 55.2 and was preferentially assessed to be rehabilitated.

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Bending ratcheting behavior of pressurized straight Z2CND18.12N stainless steel pipe

  • Wang, Lei;Chen, Gang;Zhu, Jianbei;Sun, Xiuhu;Mei, Yunhui;Ling, Xiang;Chen, Xu
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1135-1156
    • /
    • 2014
  • The ratcheting effect greatly challenges the design of piping components. With the assistance of the quasi-three point bending apparatus, ratcheting and the ratcheting boundary of pressurized straight Z2CND18.12N stainless steel pipe under bending loading and vertical displacement control were studied experimentally. The characteristics of progressive inelastic deformation in axial and hoop directions of the Z2CND18.12N stainless steel pipes were investigated. The experiment results show that the ratcheting strain occurs mainly in the hoop direction while there is less ratcheting strain in the axial direction. The characteristics of the bending ratcheting behavior of the pressure pipes were derived and compared under load control and displacement control, respectively. The results show that the cyclic bending loading and the internal pressure affect the ratcheting behavior of the pressurized straight pipe significantly under load control. In the meantime, the ratcheting characteristics are also highly associated with the cyclic displacement and the internal pressure under displacement control. All these factors affect not only the saturation of the ratcheting strain but the ratcheting strain rate. A series of multi-step bending ratcheting experiments were conducted under both control modes. It was found that the hardening effect of Z2CND18.12N stainless steel pipe under previous cyclic loadings no matter with high or low displacement amplitudes is significant, and the prior loading histories greatly retard the ratcheting strain and its rate under subsequent loadings. Finally, the ratcheting boundaries of the pressurized straight Z2CND18.12N stainless steel pipe were determined and compared based on KTA/ASME, RCC-MR and the experimental results.

Finite Element Analysis of Pipe Systems Connected by Bellows Based on APDL Customizing (APDL Customizing 기반한 신축관으로 연결된 파이프 시스템의 유한요소 해석)

  • Son, Byoung-Jik;Jang, Bongchoon;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.38-43
    • /
    • 2015
  • This study performed a finite element stress analysis of pipe system connected by bellows based on APDL(ANSYS Parametric Design Language) customizing. The effects of different shapes of developed pipes for various parameters are studied using the finite element commercial package for this study. The structural behavior of complex pipe structures with bellows was also investigated to study the interactions between bellows and other parts. Based on the ANSYS APDL, the effect of initial axial and lateral displacements, and internal temperature and pressure on the Von Mises stress distribution is also analyzed.