• Title/Summary/Keyword: Internal Performance

Search Result 3,874, Processing Time 0.045 seconds

Selected Properties of Particleboard Made from Sugar Palm (Arenga pinnata) Dregs

  • Faza AISYADEA;Greitta Kusuma DEWI;Ragil WIDYORINI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.334-344
    • /
    • 2023
  • Dregs from the sugar palm (Arenga pinnata) starch industry are considered a waste product of the agricultural industry and have not yet been optimally utilized. Therefore, this study aimed to manufacture particleboards from dregs using different amounts of adhesive and particle size ratios. Sugar palm dregs, which had been separated into fibers and powder/fine particles, were used as raw material for making particleboards. The fiber had an average length of 6.84 ± 3.23 cm, while the fine particles were of a size that passed through size 10 mesh and remained in size 60 mesh. Three ratios of fiber to fine particles (100:0, 75:25, and 50:50 wt%) with three different amounts of sucrose-citric acid adhesive (10, 15, and 20 wt%) were used in this study. Increasing the amount of fine particles and the resin content can improve the physical properties and the internal bond strength of boards made from sugar palm dregs. The fine particles possibly filled the gap between the fibers in the particleboard, while the fibers exhibited a high bending strength. As a result, a high-performance particleboard can be attained by combining the composition ratio of fiber/fine particles and resin content. In this study, particleboards made from fiber/fine particles (75:25 wt%) and adhesive content of 15 wt% and 20 wt% had the mechanical properties that met the requirements of Japanese Industrial Standard (JIS) A 5908 type 18. Sugar palm dregs have the potential to be used as raw materials to create value-added particleboards.

Development Plan of Licence Holders Health Management System (항공종사자 건강관리 제도의 발전방안)

  • Han, Bok Soon;Kwon, Young Hwan;Kim, Soo Geun;Choi, Eun Hi;Jang, Joung Soon;Shin, Yun Young;Ha, Yoon
    • Korean journal of aerospace and environmental medicine
    • /
    • v.29 no.2
    • /
    • pp.67-71
    • /
    • 2019
  • The health of licence holders (flight crew members and air traffic controllers) is recognized as an important element of aviation safety. The medical emergency symptoms that occur during the flight duty period without prior notice can interfere with human performance capabilities and threaten aviation safety. To prevent this, ICAO has been required to conduct a periodic medical assessment process of licence holders including routine analysis of in-flight incapacitation events and medical findings during medical to identify areas of increased medical risk and continuous reevaluation of the medical assessment process to concentrate on identified areas of increased medical risk. The supply and demand of licence holders have become a major issue due to the increase in air traffic around the world, and the pilot retirement age has been extended to 65 years. But, there is no significant change in the aviation medical assessments process. The follow up of the result of medical examination discovered through aviation medical examination is a very important part, but it has not been properly implemented, and the sick leaves and medical inflight incapacitation reporting system should be improved. The management of health risk factors for licence holders must be implemented to prevent aircraft accidents or aviation safety problems caused by health problems. In this paper, we propose the development plan and concrete improvement plan of the health risk management system of licence holders in Korea in terms of aviation safety.

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition (텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서)

  • Yulim Min;Yunjeong Kim;Jeongnam Kim;Saerom Seo;Hye Jin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

Development of Al-SiC Metal Matrix Composites by using Hot Press Forming Technologies (열간가압성형기술을 이용한 Ai-SiC 금속기 복합재료 개발)

  • Jeon, Ho-Jin;Kim, Tae-Won
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.9-17
    • /
    • 2007
  • Powder metallurgy has been employed for the development of SiC particle reinforced aluminum metal matrix composites by means of hot isotropic pressing and vacuum hot pressing. A material model based on micro-mechanical approach then has been presented for the processes. Densification occurs by the inelastic flow of matrix materials during the consolidation, and consequently it depends on many process conditions such as applied pressure, temperature and volume fraction of reinforcement. The model is implemented into finite element software so that the process simulation can be performed enabling the predicted relative density to be compared with experimental data. In order to determine the performance of finished products, further tensile test has been conducted using the developed specimens. The effect of internal void of the materials on mechanical properties therefore can be investigated.

Analysis of interest in non-face-to-face medical counseling of modern people in the medical industry (의료 산업에 있어 현대인의 비대면 의학 상담에 대한 관심도 분석 기법)

  • Kang, Yooseong;Park, Jong Hoon;Oh, Hayoung;Lee, Se Uk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1571-1576
    • /
    • 2022
  • This study aims to analyze the interest of modern people in non-face-to-face medical counseling in the medical industrys. Big data was collected on two social platforms, 지식인, a platform that allows experts to receive medical counseling, and YouTube. In addition to the top five keywords of telephone counseling, "internal medicine", "general medicine", "department of neurology", "department of mental health", and "pediatrics", a data set was built from each platform with a total of eight search terms: "specialist", "medical counseling", and "health information". Afterwards, pre-processing processes such as morpheme classification, disease extraction, and normalization were performed based on the crawled data. Data was visualized with word clouds, broken line graphs, quarterly graphs, and bar graphs by disease frequency based on word frequency. An emotional classification model was constructed only for YouTube data, and the performance of GRU and BERT-based models was compared.

Benefit of Using Early Contrast-Enhanced 2D T2-Weighted Fluid-Attenuated Inversion Recovery Image to Detect Leptomeningeal Metastasis in Lung-Cancer Staging

  • Kim, Han Joon;Lee, Jungbin;Lee, A Leum;Lee, Jae-Wook;Kim, Chan-Kyu;Kim, Jung Youn;Park, Sung-Tae;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.32-42
    • /
    • 2022
  • Purpose: To evaluate the clinical benefit of 2D contrast-enhanced T2 fluid-attenuated inversion recovery (CE-T2 FLAIR) image for detecting leptomeningeal metastasis (LM) in the brain metastasis work-up for lung cancer. Materials and Methods: From June 2017 to July 2019, we collected all consecutive patients with lung cancer who underwent brain magnetic resonance image (MRI), including contrast-enhanced 3D fast spin echo T1 black-blood image (CE-T1WI) and CE-T2 FLAIR; we recruited clinico-radiologically suspected LM cases. Two independent readers analyzed the images for LM in three sessions: CE-T1WI, CE-T2 FLAIR, and their combination. Results: We recruited 526 patients with suspected lung cancer who underwent brain MRI; of these, we excluded 77 (insufficient image protocol, unclear pathology, different contrast media, poor image quality). Of the 449 patients, 34 were clinico-radiologically suspected to have LM; among them, 23 were diagnosed with true LM. The calculated detection performance of CE-T1WI, CE-T2 FLAIR, and combined analysis obtained from the 34 suspected LM were highest in the combined analysis (AUC: 0.80, 0.82, and 0.89, respectively). The inter-observer agreement was also the highest in the combined analysis (0.68, 0.72, and 0.86, respectively). In quantitative analyses, CNR of CE-T2 FLAIR was significantly higher than that of CE-T1WI (Wilcoxon signed rank test, P < 0.05). Conclusion: Adding CE-T2 FLAIR might provide better detection for LM in the brain-metastasis screening for lung cancer.

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.

Proposal for Government Quality Assurance Risk Assessment System for Military Supplies (군수품 정부품질보증 위험성 평가제도 개선을 위한 제언)

  • Namsu Ahn
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.155-170
    • /
    • 2023
  • Purpose: Nowadays, the risk assessment system is widely used in many industrial and public areas to reduce the possible risks. The system is used to determine the priorities of the government quality assurance works in Defense Agency for Technology and Quality. However, as the risk assessment system is used for other purposes, there are some items that need improvement, and in this study, we propose improvement plans by benchmarking the risk assessment systems of other institutions. Methods: In this paper, first, the procedures of risk assessment system used in many industrial sites were reviewed, and how each institution specialized and applied the system. Afterwards, by benchmarking various risk assessment systems, an improvement plan on how to operate the risk assessment system in the case of government quality assurance for centrally procured military supplies was presented, and practical application cases were presented to prove the usefulness of the improvement plan. Results: The proposed risk assessment system differs from the existing system in five major aspects. First, inputs, outputs, and key performance indicators were specified from the systematic point of view. Second, risk analysis was analyzed in four dimensions: probability of occurrence, impact, detection difficulty. Third, risk mitigation measures were classified, control, transfer, and sharing. Fourth, the risk mitigation measures were realized through document verification, product verification, process verification, and quality system evaluation. Finally, risk mitigation measures were implemented and the effectiveness of the risk mitigation measures was evaluated through effectiveness evaluation. Conclusions: In order for the risk assessment procedure proposed in this study to be applied to actual work, it is necessary to obtain the consent of the person involved in the work due to the increased time for risk identification and preparation of the government quality assurance log, and a change in the information system that performs the actual work is required. Therefore, the authors of this study plan to actively perform internal seminar presentations and work improvement suggestions to apply these research outputs to actual work.

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel (터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.283-290
    • /
    • 2006
  • Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building (격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.577-585
    • /
    • 2009
  • A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.