• Title/Summary/Keyword: Internal Implant

Search Result 228, Processing Time 0.031 seconds

Histomorphometric evaluation of bone healing with fully interconnected microporous biphasic calcium phosphate ceramics in rabbit calvarial defects (삼차원적으로 연결된 미세다공성 구조를 가진 이상인산칼슘 골이식재의 골치유에 관한 조직계측학적 평가)

  • Lee, Jong-Sik;Choi, Seok-Kyu;Ryoo, Gyeong-Ho;Park, Kwang-Bum;Jang, Je-Hee;Lee, Jae-Mok;Suh, Jo-Young;Park, Jin-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • Purpose: The purpose of this study was to histomorphometrically evaluate the osteoconductivity of a new biphasic calcium phosphate ceramics with fully interconnected microporous structure. Material and Methods: Osseous defects created in the rabbit calvaria were filled with four different bone graft substitutes. Experimental sites were filled with a new fully interconnected microporous biphasic calcium phosphate with(BCP-2) or without(BCP-1) internal macropore of $4400\;{\mu}m$ in diameter. MBCP(Biomatlante, France) and Bio-Oss(Geistlich Pharma, Switzerland) were used as controls in this study. Histomorphometric evaluation was performed at 4 and 8 weeks after surgery. Result: In histologic evaluation, new bone formation and direct bony contact with the graft particles were observed in all four groups. At 4 weeks, BCP-1(15.5%) and BCP-2(15.5%) groups showed greater amount of newly formed mineralized bone area(NB%) compared to BO(11.4%) and MBCP(10.3%) groups. The amounts of NB% at 8 weeks were greater than those of 4 weeks in all four groups, but there was no statistically significant differences in NB% between the groups. Conclusion: These results indicate that new bone substitutes, BCP with interconnected microporous structure and with or without internal macroporous structures, have the osteoconductivity comparable to those of commercially available bone substitutes, MBCP and Bio-Oss.

Fit analysis of CAD-CAM custom abutment using micro-CT (Micro-CT를 이용한 맞춤형 CAD-CAM 지대주의 적합성 분석)

  • Min, Gwang-Seok;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.370-378
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate screw joint stability and sagittal fit between internal connection implant fixtures of two different manufacturers and customized abutments. Materials and methods: Internal connection implant systems from two different manufacturers (Biomet 3i system, Astra Tech system) were selected for this study (n=24 for each implant system, total n=48). For 3i implant system, half of the implants were connected with Ti ready-made abutments and the other half implants were connected with Ti CAD-CAM custom ones of domestic-make (Myplant, Raphabio Co., Seoul, Korea) and were classified into Group 1 and Group 2 respectively. Astra implants were divided into Group 3 and Group 4 in the same way. Micro-CT sagittal imaging was performed for fit analysis of interfaces and preloading reverse torque values (RTV) were measured. Results: In the contact length of fixture-abutment interface, there were no significant differences not only between Group 1 and Group 2 but also between Group 3 and Group 4 (Mann-Whitney test, P>.05). However, Group 2 and Group 4 showed higher contact length significantly than Group 1 and Group 3 in abutment-screw interface as well as fixture-screw one (Mann-Whitney test, P<.05). In addition, RTV was lower in CAD-CAM custom abutments compared to ready-made ones (Student t-test, P<.05). Conclusion: It is considered that domestically manufactured CAD-CAM custom abutments have similar fit at the fixture abutment interface and it could be used clinically. However, RTV of CAD-CAM custom abutments should be improved for the increase of clinical application.

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

Influence of Implant Fixture-Abutment Connection and Abutment Design on Mechanical Strength (임플란트 고정체-지대주 연결부 및 지대주 디자인이 기계적 강도에 미치는 영향)

  • Chun, Mi-Hyun;Jeong, Chang-Mo;Jeon, Young-Chan;Eom, Tae-Gwan;Yoon, Ji-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.269-281
    • /
    • 2008
  • Fatigue or overload can result in mechanical problems of implant components. The mechanical strength in the implant system is dependent on several factors, such as screw and fixture diameters, material, and design of the fixture-abutment connection and abutment. In these factors, the last rules the strength and stability of the fixture-abutment assembly. There have been some previous reports on the mechanical strength of the fixture-abutment assembly with the compressive bending test or short-term cyclic loading test. However, it is restrictive to predict the long-term stability of the implant system with them. The purpose of this study was to evaluate the influence of the design of the fixture-abutment connection and abutment on the mechanical strength and failure mode by conducting the endurance limit test as well as the compressive bending strength test. Tests were performed according to a specified test(ISO/FDIS 14801) in 4 fixture-abutment assemblies of the Osstem implant system: an external butt joint with Cemented abutment (group BJT), an external butt joint with Safe abutment (group BJS), an internal conical joint with Solid abutment (group CJO), and an internal conical joint with ComOcta abutment (group CJT). The following conclusions were drawn within the limitation of this study. Compressive bending strengths were decreased in order of group BJS(1392.0N), group CJO(1261.8N), group BJT(1153.2N), and group CJT(1110.2N). There were no significant differences in compressive bending strengths between group BJT and group CJT(P>.05). Endurance limits were decreased in order of group CJO(600N), group CJT(453N), group BJS(360N), and group BJT(300N). 3. Compressive bending strengths were influenced by the connection and abutment design of the implant system, however endurance limits were affected more considerably by the connection design.

Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향)

  • Park, Jae-Kyoung;Jeong, Chang-Mo;Jeon, Young-Chan;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.

Study of an analytical model for screw loosening mechanism of dental implants (치과용 임플란트의 풀림현상 규명을 위한 해석적 모델에 관한연구)

  • Seo, June-Woo;Kang, Kyoung-Tak;Chun, Heoung-Jae;Han, Chong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.636-641
    • /
    • 2007
  • This research focuses on the development of an analytical model loosening mechanism of dental implant system. The model is utilized for predictions of preload values for internal and external types of implants. It identifies the effects of various parameters such as friction, geometric factors and mechanical properties on the loosening mechanism of the implant system. The results of analytical model are compared to those of the numerical method for validation.

  • PDF

EFFECTIVE REDUCTION OF MANDIBULAR ANGLE FRACTURE WITH MINI-IMPLANT; CASE REPORT (Mini-implant를 이용한 하악골 우각부 골절의 효과적인 정복; 증례보고)

  • Yang, Byoung-Eun;Choi, Young-Jun;Choi, Won-Cheul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.397-400
    • /
    • 2007
  • In an open reduction of the mandibular angle fracture, it is crucial to approximate each fracture segment as closer as possible for the reduction of the healing period. In this case report, we proposed a new technique for the mandibular angle fracture. This was designed to minimize the gap between two separated segments using mini-implants and surgical wires. Mini-implants were placed around the fracture line, followed by wire ligation to minimize the fracture gap. And then internal fixation was easily employed with plates and screws. The advantages of this technique were reduced time for operation, the promotion of healing, rapid functional recovery, and few complications.

Use of Acellular Biologic Matrix Envelope for Cardiac Implantable Electronic Device Placement to Correct Migration into Submuscular Breast Implant Pocket

  • Peyton Terry;Kenneth Bilchick;Chris A. Campbell
    • Archives of Plastic Surgery
    • /
    • v.50 no.2
    • /
    • pp.156-159
    • /
    • 2023
  • Breast implants whether used for cosmetic or reconstructive purposes can be placed in pockets either above or below the pectoralis major muscle, depending on clinical circumstances such as subcutaneous tissue volume, history of radiation, and patient preference. Likewise, cardiac implantable electronic devices (CIEDs) can be placed above or below the pectoralis major muscle. When a patient has both devices, knowledge of the pocket location is important for procedural planning and for durability of device placement and performance. Here, we report a patient who previously failed subcutaneous CIED placement due to incision manipulation with prior threatened device exposure requiring plane change to subpectoral pocket. Her course was complicated by submuscular migration of the CIED into her breast implant periprosthetic pocket. With subcutaneous plane change being inadvisable due to patient noncompliance, soft tissue support of subpectoral CIED placement with an acellular biologic matrix (ABM) was performed. Similar to soft tissue support used for breast implants, submuscular CIED neo-pocket creation with ABM was performed with durable CIED device positioning confirmed at 9 months postprocedure.

Study of a "wing-type" implant on stress distribution and bone resorption at the alveolar crest

  • Park, Jong-Wook;Kim, Sin-Guen;Choi, Dong-Won;Choi, Mi-Ra;Yoon, Youn-Jin;Park, Jun-Woo;Choi, Dong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.337-342
    • /
    • 2012
  • Objectives: Implants connect the internal body to its external structure, and is mainly supported by alveolar bone. Stable osseointegration is therefore required when implants are inserted into bone to retain structural integrity. In this paper, we present an implant with a "wing" design on its area. This type of implant improved stress distribution patterns and promoted changes in bone remodeling. Materials and Methods: Finite element analysis was performed on two types of implants. One implant was designed to have wings on its cervical area, and the other was a general root form type. On each implant, tensile and compressive forces ($30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$) were loaded in the vertical direction. Stress distribution and displacement were subsequently measured. Results: The maximum stresses measured for the compressive forces of the wing-type implant were $21.5979N/m^2$, $25.1974N/m^2$, $29.7971N/m^2$, and $32.3967N/m^2$ when $30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$ were loaded, respectively. The maximum stresses measured for the root form type were $23.0442N/m^2$, $26.9950N/m^2$, $30.7257N/m^2$, and $34.5584N/m^2$ when $30N/m^2$, $35N/m^2$, $40N/m^2$, and $45N/m^2$ were loaded, respectively. Thus, the maximum stresses measured for the tensile force of the root form implant were significantly higher (about three times greater) than the wing-type implant. The displacement of each implant showed no significant difference. Modifying the design of cervical implants improves the strength of bone structure surrounding these implants. In this study, we used the wing-type cervical design to reduce both compressive and tensile distribution forces loaded onto the surrounding structures. In future studies, we will optimize implant length and placement to improve results. Conclusion: 1. Changing the cervical design of implants improves stress distribution to the surrounding bone. 2. The wing-type implant yielded better results, in terms of stress distribution, than the former root-type implant.

Multilateral analysis of $Renova^{(R)}$ implant placement and its Survival rate ($Renova^{(R)}$ 임플란트 식립 후 단기간의 생존율에 대한 다각적 분석)

  • Yang, Jin-Hyuk;Kim, Sung-Tae;Jung, Ui-Won;Nam, Woong;Jung, Young-Soo;Shim, June-Sung;Moon, Hong-Seok;Lee, Keun-Woo;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.3
    • /
    • pp.413-428
    • /
    • 2008
  • Purpose: Given the predictability of dental implant procedure from the studies of successful osseointegration, implant dentistry is often the treatment of choice to replace missing teeth in edentulous patient instead of the fixed prosthesis or removable denture. The $Renova^{(R)}$ dental implant has a RBM(Resorbable Blast Media) surface, internal hex prosthetic connection and a tapered design. At this study gives the analysis of the implant and the short term survival rate of the implant. Material and Methods: In this study, a multilateral analysis was performed on the subjects undergoing placement with $Renova^{(R)}$ implant between August 2006 and February 2008 in Yonsei University dental hospital. 96 implants were placed in 56 patients and they were surveyed for cumulative survival rate. Among them 78 implants in 44 patients were surveyed for the rest analyses. Result: 1. The cumulative survival rate was 96.88% of 96 implants in 56 patients. 2. The mean marginal bone loss was 0.803mm and the marginal bone loss in augmentation group has higher value than the marginal bone loss in non augmentation group. 3. The health scale for the implants were 87% in success group, 9% in satisfactory survival group, 1% in compromised survival group, and 3% in failure group. 4. Two implants placed in poor bone posterior area by 2-stage failed during prosthetic procedure. Conclusion: $Renova^{(R)}$ dental implant showed high cumulative survival rate in installation on partial edentulous ridge and could be a predictable implant system.