• Title/Summary/Keyword: Intermolecular

Search Result 461, Processing Time 0.027 seconds

The Crystal Structure of a $\beta$-Allyl Type Phenylpropanoid 2-(4-allyl-2, 6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl) propan-1-ol, from the Seeds of Myristica fragrans

  • Kim, Yang-Bae;Park, Il-Yeong;Kim, Jeong-Ae;Shin, Kuk-Hyun
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.137-142
    • /
    • 1991
  • The structure of a $\beta$-allyl type phenylpropanoid was determined by single crystal X-ray diffraction analysis. The compound was recrystallized from a mixture of n-hexane and benzene in monoclinic crystal system with a = 24.782 (2), b = 10.537 (1), c = 7.871 (1) ${\AA}, \beta=95.74$ (1)$^\circ, $D_x$=1.216, $D_m$=1.22g/$cm^3$, space group $P2_1/a$, and Z=4. The structure was solved by direct method and refined by least-squares procedure to the final R value of 0.054 for 2824 observed reflections {$F{\geq}3\sigma(F)$}. The molecular geometry shows a most stable trans-form with respect to the bulky phenyls, and this conformation is settled by an intramolecular hydrogen bond. In the crystal, the molecules are arranged along with the screw axis, and stabilized by the $O{\cdot}H{\cdots}O$ type intermolecular hydrogen bonds. The other intermolecular contacts appear to be the normal van der Waals' interactions. The compound is a dimeric phenylpropanoid, and belongs to the neolignan analogues.

  • PDF

Semi-Empirical SCF MO Studies of Conformation and Acid Catalysis of Thioacetamide (양자화학적 방법의 개발과 응용. 티오아세트아미드의 형태와 산촉매 가수분해반응에 대한 반경험적 SCF MO)

  • Ik Choon Lee;Ki Yull Yang;Byung Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.207-213
    • /
    • 1981
  • Conformations of thioacetamide (TAA) and its protonated form were determined using the CNDO/2 method, and the intermolecular interaction energies between the protonated TAA and water were calculated. It was found that: (1) protonation occurs preferentially on the N rather than on the S atom, (2) the stabilization energy of intermolecular perturbation between the protonated TAA and water was also large for the N-protonated TAA. This causes preferential CS bond cleavage due to large antibonding nature of the CS bond in the LUMO, and leads to an orbital controlled reaction.

  • PDF

The Intermolecular Potential of Ar-Ar by Regularized Inverse Method (규칙화 역과정 방법을 이용한 Ar-Ar의 분자간 위치에너지 결정)

  • Kim, Hwa Joong;Kim, Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 1996
  • A stable and accurate inverse method for extracting potential from spectroscopic data studied. The method is based on the Tikhonov regularization method to overcome the possible instability of nonlinear inverse problems using a priori smooth properties of the potential energy surface. The merit of this method is to treat the potential as continuous functions of the intermolecular coordinates instead of the conventional parameter fitting of restricted potential forms. Numerical study for the Ar-Ar show that from spectroscopic data the exact potential has been recovered whole region and the discrepancies by the dispersion force observed at the large distance between the exact and Morse potential or from RKR method can be eliminated by this method.

  • PDF

The Study Trend and Problems of Propulsion System in a Zero-gravity Environment (무중력 환경에서 추진기관의 문제점 및 연구 동향)

  • Kil, Gyoung-Sub;Lim, Ha-Young;Lee, Kyung-Won;Cho, In-Hyun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.96-103
    • /
    • 2010
  • The propulsion systems such as upper stages of launch vehicles, orbiters, spacecrafts have to operate in the zero gravity environment. Because the flight condition where the vehicle undergoes is different from the normal gravity state, many studies have been being in progress. Fluid behavior in the zero gravity condition is differently shown in the normal gravity state because the importance of the intermolecular force, such as adhesion, cohesion, and surface tension is enlarged. In this paper, we investigate the characteristic of fluid behavior and describe effects and problems on the liquid propulsion system due to these fluid behavior. We also check which studies are in progress in order to solve these problems.

  • PDF

A Study on the Phase Criteria of Nanoscale Systems (나노스케일 계의 상태기준에 관한 연구)

  • Lim, Min-Jong;Choi, Gyung-Min;Kim, Duck-Jool;Chung, Han-Shik;Jeong, Hyo-Min;Choi, Soon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.435-447
    • /
    • 2007
  • Recently, as MEMS and NEMS devices have been widely used in the various engineering applications, the characteristics of nanoscale systems are investigated in the limelight. However, as opposed to a macroscale system, the identification of the state of nanoscale systems is extremely hard because they can include only the order of $10^3{\sim}10^5$ molecules, which requires highly expensive and accurate experimental apparatus for an investigation. This limitations make the study on nanoscale system use computer simulations. Therefore, it is strongly required to identify the state of nanoscale system simulated in computer simulation. In this molecular dynamics(MD) study, we suggest that the potential energy of individual molecule can be used as criterion for defining the state of clusters or nanoscale systems. In addition, we compared the phase state from the potential energy with one from the radial distribution function(RDF) for verification. The comparison showed that the intermolecular potential energy can be used as a criteria distinguishing the phase state of nanoscale systems.

The Crystal Structure of One Natural Compound Cyclo-(1,10-Docandiamino-11,20-Docanedioic) Amide (1,12-Diazacyclodocosane-2,11-Dione)

  • Wei, Wan-Xing;Pan, Yuan-Jiang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1527-1530
    • /
    • 2002
  • 1,12-diazacyclodocosane-2,11-dione was first isolated from a plant Phyllanthus niruri Linn. Its structure has been determined by means of spectroscopy methods and X-ray crystallography. Two peptide groups in the big ring (lactam) are the main factors influencing intermolecular contacts. The hydrogen-bond interaction of these hydrophilic groups is observed in the crystal structure. Meanwhile, C-H···O hydrogen bonds in molecules contribute to the formation of the whole crystal. These two kinds of hydrogen-bond form six- member rings among molecules. This compound crystallizes in the triclinic space group P-1 with a= 9.588(1) $\AA$, b= $9.850(1)\AA$, c = $11.810(1)\AA$, $\alpha=$ 68.18(1)$^{\circ}C$ , $\beta=$ 84.98(1), $\gamma$ = 86.03(1)$^{\circ}C$ , V = $1030.66(17)\AA3$ , Z = 2. A disorder of five-member carbon chain in the whole ring is observed in the title compound. The bond angle 105.8(4) is determined for a extreme configuration C(14)-C(15)-C(16), and 117.7(10) for another extreme configuration C(14')-C(15')-C(16'). In this crystal, two molecules are tied each other by short intermolecular hydrogen bonds, the oxygen atom being tied by hydrogen bond to nitrogen atom of another two molecules. The NMR and IR spectral data coincides to the structure of the compound.

Constituents of Paulownia tomentosa Stem(III): The Crystal Structure of Methyl 5-Hydroxy-dinaphtho[1,2-2',3]furan-7,12-dione-6-carboxylate

  • Park, Il-Yeong;Kim, Bak-Kwang;Kim, Yang-Bae
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.52-57
    • /
    • 1992
  • The molecular structure of a natural compound was determined by single crystal X-ray diffraction analysis. The compound was isolated by methanol extraction and repeated chromatography from the stem of Paulownia tomentosa. Yellow prismatic crystals of the compound, which were recrystallized from tetrahydrofuran, are triclinic, with a = 7.310 (6), b = 10.753(6), c = 11.586(5) ${\AA}.\;\alpha= 93.30(6),\;\beta=105.62(10),\;\gamma=109.49(7)^\circ,\;D_x=1.514,\;D_m=1.51 g/cm^3$, space group P1 and Z = 2. The structure was solved by direct method, and refined by least-squares procedure to the final R-value of 0.032 for 1271 independent reflections $(F\le3\sigma{(F))}$. The compound is one of new furanquinone analogue. The molecule has a nearly planar conformation with an intramolecular hydrogen bond. In the crystal, the planar molecules are arranged as a prallel sheet-like pattern, and these stackings are stabilized by the O-H...O type intermolecular hydrogen bonds. The other intermolecular contacts appear to be the normal van der Waals interactions.

  • PDF

PHOTOPHYSICAL PROPERTIES OF FLUORENONES WITH CHIRAL SUBSTITUENTS AND THEIR ASYMMETRIC RECOGNITION THROUGH INTERMOLECULAR HYDROGEN BONDING INTERACTIONS IN THE EXCITED STATES

  • Aikawa, Yoshihide;Shimada, Tetsuya;Tachibana, Hiroshi;Inoue, Haruo
    • Journal of Photoscience
    • /
    • v.6 no.4
    • /
    • pp.165-170
    • /
    • 1999
  • Asymmetric recognition of chiral alcohol by fluorenone derivatives with chiral substituents through intermolecular hydrogen bonding interaction in the singlet excited state was attempted. 1-((1S, 2R, 5S)-(+)-Menthyloxycarbonyl)aminofluoren-9-one (1-MAF) and 1-((1S, 2R, 5S)-(+)-menthyloxycarbonyl)oxyfluoren-9-one (1-MOF) were synthesized and their photophysical behaviors were characterized by the measurement of absorption and fluorescence spectra, as well as the quantum yield and the lifetime of fluorescence. The excited singlet states of 1-MAF and 1-MOF were revealed to have characteristics similar to those of fluorenone, though the intramolecular CT nature was fairly suppressed as compared with 3- and 4-substituted aminofluorenones. Fluorescences of 1-MAF and 1-MOF in acetonitrile were quenched by the addition of alcohols. Differences in fluorescence quenching efficiency were hardly observe for rather small chiral alcohols such as (R)-(-)- or (S)-(+)-2-butanol, while bulky alcohols such as menthol and isopinocampheol showed chiral recognition effects in their fluorescence quenching of 1-MAF in either acetonitrile or butyronitrile.

  • PDF

Extended Bifurcated Hydrogen Bonds Network Material of Copper(II) Complexes with 2-Dimethylaminomethyl-3-hydroxypyridine: Structures and Magnetic Properties

  • Kang, Sung-Kwon;Lee, Hong-Woo;Sengottuvelan, Nallathambi;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.95-99
    • /
    • 2012
  • Two novel copper(II) complexes, [Cu(dmamhp)$(H_2O)_2(SO_4)]_n$ (1) and [Cu(dmamhp)$(NO_3)_2(H_2O)]{\cdot}H_2O$ (2) [dmamhp = 2-dimethylaminomethyl-3-hydroxypyridine] have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 displays a double one-dimensional chains structure, in which each chain is constituted with the distorted octahedral copper(II) complex bridged through bidentate sulfate ligands resulting in a coordination polymer. The bifurcated hydrogen bonds and $\pi-\pi$ interactions play important roles in the formation of the double chains structure. On the other hand, compound 2 adopts a distorted square pyramidal geometry around copper(II) ion and exists as a discrete monomer. There are intermolecular bifurcated hydrogen bonds and $\pi-\pi$ stacking interactions between the monomeric units. The magnetic properties revealed that the paramagnetic behaviors are dominantly manifested and there are no intermolecular magnetic interactions in both compound 1 and 2.

Optical and Acoustic Properties of Binary Mixtures of Butanol Isomers as Oxygenates with Cyclohexane, Benzene and Toluene at 308.15 K

  • Verma, Sweety;Gahlyan, Suman;Rani, Manju;Maken, Sanjeev
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.663-678
    • /
    • 2018
  • Refractive index and speeds of sound for the binary mixture of isomer of butanol (1) + cyclohexane, benzene and toluene (2) were measured at 308.15 K. The measured data were used to calculate deviation in refractive index ${\Delta}n$, ultrasonic speed ${\Delta}u$, isentropic compressibility $K_s^E$, available volume $V_a$, excess intermolecular free length $L_f$ and molecular association $M_A$. All the derived properties were correlated with polynomial equation. Ultrasonic speed data were predicted using various empirical correlations like Nomoto, van Dael, impedance dependence and theoretically with Schaaff's collision factor theory (CFT). Jacobson free length theory (FLT) was used to calculate $L_f$. The measured refractive index was also correlated with various mixing rules. The deviation in refractive index Δn and ultrasonic speed ${\Delta}u$ was used to determine the intermolecular interactions.